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Abstract Nonnormality of univariate data has been
extensively examined previously (Blanca et al., Method-
ology: European Journal of Research Methods for the
Behavioral and Social Sciences, 9(2), 78–84, 2013; Miceeri,
Psychological Bulletin, 105(1), 156, 1989). However, less
is known of the potential nonnormality of multivariate data
although multivariate analysis is commonly used in psy-
chological and educational research. Using univariate and
multivariate skewness and kurtosis as measures of nonnor-
mality, this study examined 1,567 univariate distriubtions
and 254 multivariate distributions collected from authors of
articles published in Psychological Science and the Amer-
ican Education Research Journal. We found that 74 % of
univariate distributions and 68 % multivariate distributions
deviated from normal distributions. In a simulation study
using typical values of skewness and kurtosis that we col-
lected, we found that the resulting type I error rates were
17 % in a t-test and 30 % in a factor analysis under some
conditions. Hence, we argue that it is time to routinely report
skewness and kurtosis along with other summary statistics
such as means and variances. To facilitate future report of
skewness and kurtosis, we provide a tutorial on how to com-
pute univariate and multivariate skewness and kurtosis by
SAS, SPSS, R and a newly developed Web application.
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Almost all commonly used statistical methods in psychol-
ogy and other social sciences are based on the assumption
that the collected data are normally distributed. For exam-
ple, t- and F-distributions for mean comparison, Fisher Z-
transformation for inferring correlation, and standard errors
and confidence intervals in multivariate statistics are all
based on the normality assumption (Tabachnick & Fidell,
2012). Researchers rely on these methods to accurately
portray the effects under investigation, but may not be
aware that their data do not meet the normality assump-
tion behind these tests or what repercussions they face when
the assumption is violated. From a methodological perspec-
tive, if quantitative researchers know the type and severity
of nonnormality that researchers are facing, they can exam-
ine the robustness of normal-based methods as well as
develop new methods that are better suited for the analysis
of nonnormal data. It is thus critical to understand whether
practical data satisfy the normality assumption and if not,
how severe the nonnormality is, what type of nonnormal-
ity it is, what the consequences are, and what can be done
about it.

To understand normality or nonnormality, we need to
first define a measure of it. Micceri (1989) evaluated
deviations from normality based on arbitrary cut-offs of
various measures of nonnormality, including asymmetry,
tail weight, outliers, and modality. He found that all 440
large-sample achievement and psychometric measures dis-
tributions were nonnormal, 90 % of which had sample sizes
larger than 450. More recently, Blanca et al. (2013) evalu-
ated nonnormality using the skewness and kurtosis1 of 693

1Without specific mention, the skewness and kurtosis refer to the
sample skewness and kurtosis throughout the paper.
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small samples, with sample size ranging from 10 to 30.
The study includes many psychological variables, and the
authors found that 94.5 % of distributions were outside the
range of [-0.25, 0.25] on either skewness or kurtosis and
therefore violated the normality assumption. However, nei-
ther Micceri nor Blanca et al. discuss the distribution of
skewness or kurtosis, how to test violations of normality,
or how much effect they can have on the typically used
methods such as t-test and factor analysis.

Scheffe (1959, p.333) has commented that kurtosis and
skewness are “the most important indicators of the extent
to which nonnormality affects the usual inferences made in
the analysis of variance.” Skewness and kurtosis are also
an intuitive means to understand normality. If skewness is
different from 0, the distribution deviates from symmetry.
If kurtosis is different from 0, the distribution deviates from
normality in tail mass and shoulder (DeCarlo, 1997b).2

In practice, normality measures such as skewness and
kurtosis are rarely reported. In order to study nonnormal-
ity, we have contacted and obtained responses from 124
researchers, among whom only three reported skewness
and kurtosis in their papers. The under-report of normal-
ity measures can be due to several reasons. First, many
researchers are still not aware of the prevalence and influ-
ence of nonnormality. Second, not every researcher is famil-
iar with skewness and kurtosis or their interpretation. Third,
extra work is needed to compute skewness and kurtosis
than the commonly used summary statistics such as means
and standard deviations. Fourth, researchers might worry
about the consequences of reporting large skewness and
kurtosis.

This paper provides a simple and practical response to the
continuing under-report of nonnormality measures in pub-
lished literature by elucidating the problem of nonnormality
and offering feasible recommendations. We begin with an
easy-to-follow introduction to univariate and multivariate
skewness and kurtosis, their calculations, and interpreta-
tions. We then report on a review we conducted assessing
the prevalence and severity of univariate and multivariate
skewness and kurtosis in recent psychology and education
publications. We also show the influence of skewness and
kurtosis on commonly used statistical tests in our field using
data of typical skewness, kurtosis, and sample size found
in our review. In addition, we offer a tutorial on how to
compute the skewness and kurtosis measures we report here
through commonly used software including SAS, SPSS, R,
and a Web application. Finally, we offer practical recom-
mendations for our readers to follow in their own research,

2Kurtosis measures can be centered at either 0 or 3, the former is
usually referred to as “excess kurtosis”. This is because the normal
distribution has a kurtosis of 3, and therefore an excess kurtosis of 0.

including a guideline on how to report sample statistics in
empirical research and some possible solutions for nonnor-
mality.

Univariate and multivariate skewness and kurtosis

Different formulations for skewness and kurtosis exist in
the literature. Joanes and Gill (1998) summarize three com-
mon formulations for univariate skewness and kurtosis that
they refer to as g1 and g2, G1 and G2, and b1 and b2. The
R package moments (Komsta & Novomestky, 2015), SAS
proc means with vardef=n, Mplus, and STATA report g1 and
g2. Excel, SPSS, SAS proc means with vardef=df, and SAS
proc univariate reportG1 andG2. Minitab reports b1 and b2,
and the R package e1071 (Meyer et al., 2015) can report all
three. There are also several measures of multivariate skew-
ness and kurtosis, thoughMardia’s measures (Mardia, 1970)
are by far the most common. These are currently available
in STATA, or as add-on macros multnorm in SAS or mardia
in SPSS (DeCarlo, 1997a).

Univariate skewness and kurtosis

For the univariate case, we adopt Fisher’s skewness (G1)
and kurtosis (G2). Specifically, the skewness, G1, is calcu-
lated as

G1 =
√

n(n − 1)

n − 2
· m3

m
3/2
2

, (1)

and the kurtosis, G2, as

G2 = n − 1

(n − 2)(n − 3)
·
[
(n + 1)

(
m4

m2
2

− 3

)
+ 6

]
, (2)

where mr = ∑n
i=1(xi − x̄)r/n is the rth central moment

with x̄ being the sample mean and n the sample size. The
sample skewness G1 can take any value between negative
infinity and positive infinity. For a symmetric distribution
such as a normal distribution, the expectation of skewness is
0. A non-zero skewness indicates that a distribution “leans”
one way or the other and has an asymmetric tail. Distribu-
tions with positive skewness have a longer right tail in the
positive direction, and those with negative skewness have a
longer left tail in the negative direction.

Figure 1 portrays three distributions with different values
of skewness. The one in the middle is a normal distribution
and its skewness is 0. The one on the left is a lognormal
distribution with a positive skewness = 0.95. A commonly
used example of a distribution with a long positive tail is
the distribution of income where most households make
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Fig. 1 Illustration of positive and negative skewness

around $53,000 a year3 and fewer and fewer make more. In
psychology, typical response time data often show positive
skewness because much longer response time is less com-
mon (Palmer et al., 2011). The distribution on the right in
Fig. 1 is a skew-normal distribution with a negative skew-
ness = -0.3. For example, high school GPA of students who
apply for colleges often shows such a distribution because
students with lower GPA are less likely to seek a college
degree. In psychological research, scores on easy cognitive
tasks tend to be negatively skewed because the majority of
participants can complete most tasks successfully (Wang
et al., 2008).

Kurtosis is associated with the tail, shoulder and peaked-
ness of a distribution. Generally, kurtosis increases with
peakedness and decreases with flatness. However, as
DeCarlo (1997b) explains, it has as much to do with the
shoulder and tails of a distribution as it does with the
peakedness. This is because peakedness can be masked by
variance. Figure 2a and b illustrate this relationship clearly.
Figure 2a shows the densities of three normal distribu-
tions each with kurtosis of 0 but different variances, and
Fig. 2b shows three distributions with different kurtosis but
the same variance. Normal distributions with low variance
have high peaks and light tails as in Fig. 2a, while distri-
butions with high kurtosis have high peaks and heavy tails
as in Fig. 2b. Hence, peakedness alone is not indicative of
kurtosis, but rather it is the overall shape that is important.
Kurtosis must increase as skewness increases, because of
the relationship: kurtosis ≥ skewness2 − 2 (Shohat, 1929).

Kurtosis has a range of [−2(n−1)/(n−3), ∞) in a sam-
ple of size n and a range of [-2,∞] in the population.4 The

3The inflation adjusted medium household income is $53,657 in 2014
based on census.
4Note that if g2 = m4/m

2
2 − 3 is used to estimate kurtosis it also has a

minimum value of -2.

expectation of kurtosis of a normal distribution is 0. If a dis-
tribution is leptokurtic, meaning it has positive kurtosis, the
distribution has a fatter tail than the normal distribution with
the same variance. Generally speaking, if a data set is con-
taminated or contains extreme values, its kurtosis is positive.
If a distribution is platykurtic, meaning it has negative kur-
tosis, the distribution has a relatively flat shoulder and short
tails (e.g., see Fig. 2b). For example, the distribution of age
of the US population has negative kurtosis because there are
generally the same number of people at each age.5

Because for a normal distribution both skewness and
kurtosis are equal to 0 in the population, we can conduct
hypothesis testing to evaluate whether a given sample devi-
ates from a normal population. Specifically, the hypothesis
testing can be conducted in the following way.6 We first cal-
culate the standard errors of skewness (SES) and kurtosis
(SEK) under the normality assumption (Bliss, 1967, p.144-
145),

SES =
√

6n(n − 1)

(n − 2)(n + 1)(n + 3)
, (3)

SEK = 2(SES)

√
n2 − 1

(n − 3)(n + 5)
. (4)

Note that the standard errors are functions of sample size. In
particular, standard error decreases as sample size increases,
and the strictness with which we call a distribution “normal”
becomes more and more rigid. This is a natural conse-
quence of statistical inference. With these standard errors,
two statistics,

ZG1 = G1/SES (5)

and

ZG2 = G2/SEK, (6)

can be formed for skewness and kurtosis, respectively. Both
of these statistics can be compared against the standard
normal distribution, N(0, 1), to obtain a p-value to test
a distribution’s departure from normality (Bliss, 1967). If
there is a significant departure, the p-value is smaller than
.05 and we can infer that the underlying population is non-
normal. If neither test is significant, there is not enough

5Based the estimated population by the US Census
(https://www.census.gov/popest/data/national/asrh/2014/files/
NC-EST2014-ALLDATA-R-File01.csv), the kurtosis of age is -0.844.
6Other hypothesis testing methods for skewness and kurtosis are avail-
able (Anscombe and Glynn, 1983; D’Agostino, 1970). The reason for
adopting the method discussed here is that the standard errors of skew-
ness and kurtosis are reported in popular statistical software such as
SPSS and SAS, and, therefore, it is a feasible method for evaluating
skewness and kurtosis through existing software.

https://www.census.gov/popest/data/national/asrh/2014/files/NC-EST2014-ALLDATA-R-File01.csv
https://www.census.gov/popest/data/national/asrh/2014/files/NC-EST2014-ALLDATA-R-File01.csv
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Fig. 2 Illustration of the relationship between kurtosis and variance. In Fig 2a each population has a kurtosis of 0, and variance varies from 0.5
to 2.0. In Fig 2b each population has a variance of 1, and kurtosis varies from -1 to 3.

evidence to reject normality based on skewness or kurtosis
although it may still be nonnormal in other characteristics.

Multivariate skewness and kurtosis

The univariate skewness and kurtosis have been extended to
multivariate data. Multivariate skewness and kurtosis mea-
sure the same shape characteristics as in the univariate case.
However, instead of making the comparison of the distribu-
tion of one variable against a univariate normal distribution,
they are comparing the joint distribution of several variables
against a multivariate normal distribution.

In this study, we use Mardia’s measures (Mardia, 1970)
of multivariate skewness and kurtosis, because they are
most often included in software packages. Mardia defined
multivariate skewness and kurtosis, respectively, as

b1,p = 1

n2

n∑
i=1

n∑
j=1

[
(xi − x̄) ′S−1 (

xj − x̄
)]3

, (7)

b2,p = 1

n

n∑
i=1

[
(xi − x̄) ′S−1

(xi − x̄)
]2

, (8)

where x is a p × 1 vector of random variables and S is the
biased sample covariance matrix of x defined as

S = 1

n

n∑
i=1

[
(xi − x̄)(xi − x̄)′

]
. (9)

Both measures have a p subscript, so they are specific to a
set of p variables. The expected Mardia’s skewness is 0 for
a multivariate normal distribution and higher values indi-
cate a more severe departure from normality. The expected
Mardia’s kurtosis is p(p + 2) for a multivarite normal
distribution of p variables. As in the univariate case, val-
ues under this expectation indicate platykurtism and higher
values indicate leptokurtism.

Two statistics,

z1,p = n

6
b1,p (10)

and

z2,p = b2,p − [p(p + 2)(n − 1)] /(n + 1)√
[8p(p + 2)] /n

(11)

can be formed for multivariate skewness and kurtosis,
respectively. The statistic z1,p can be compared against
the chi-squared distribution χ2

p(p+1)(p+2)/6, and the statistic
z2,p can be compared against the standard normal dis-
tribution N(0, 1) to test a distribution’s departure from
normality. If the test statistic z1,p is significant, e.g. the p-
value is smaller than .05, the joint distribution of the set
of p variables has significant skewness; if the test statistic
z2,p is significant, the joint distribution has significant kur-
tosis. If at least one of these tests is significant, it is inferred
that the underlying joint population is nonnormal. As in the
univariate case, non-significance does not necessarily imply
normality.

Review of skewness and kurtosis in practical data

Although Micceri (1989) and Blanca et al. (2013) have
studied univariate nonnormality, we are not aware of any
study that has investigated multivariate skewness and kur-
tosis with empirical data or has tested the significance of
nonnormality. Therefore, we conducted a study to further
evaluate the severity of nonnormality of empirical data,
especially in the multivariate case. Focusing on published
research, we contacted 339 researchers with publications
that appeared in Psychological Science from January 2013
to June 2014 and 164 more researchers with publications
that appeared in the American Education Research Journal
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from January 2010 to June 2014. The two journals were cho-
sen due to their prestige in their corresponding fields. We
asked the researchers to provide the univariate and multi-
variate skewness and kurtosis of continuous variables used
in their papers. Binary, categorical, and nominal variables
were excluded, but likert items were included because they
are often treated as normal in data analysis. To help the
researchers compute the skewness and kurtosis, we provided
a tutorial for different software as we will present later in
this paper. Our data collection ended in November, 2014, by
which point we had obtained 1,567 univariate measures and
254 multivariate measures of skewness and kurtosis from
194 studies. Some authors submitted univariate results with-
out multivariate results so some variables for which we have
univariate measures are not included in a multivariate mea-
sure. The median sample size for these studies was 106,
and the sample size ranged from 10 to 200,000. The median
number of variables included in a multivariate measure was
3, and ranged from 1 to 36. Since researchers had the option
to submit skewness and kurtosis anonymously, it is unclear
how many authors responded to our request or what their
study characteristics may be.

Univariate skewness and kurtosis

As shown in Table 1, univariate skewness ranged from
-10.87 to 25.54 and univariate kurtosis from -2.20 to
1,093.48, far wider than previously reported or tested.

Because these most extreme values may be outliers, we also
report 1st through 99th percentiles of univariate skewness
and kurtosis. Percentiles can be interpreted as the percent
of samples with lower skewness or kurtosis than that value.
There is clearly a large range from the 1st to the 99th
percentile, especially for kurtosis. The correlation between
sample size and skewness is r = −0.005, and with kurtosis
is r = 0.025. These are comparable to what Blanca et al.
(2013) have reported in which correlations between sample
size and skewness and kurtosis were .03 and -.02, respec-
tively. The results in Table 1 include skewness and kurtosis
when the sample size is smaller and larger than 106, the
median sample size of all collected data. As shown in this
table, negative skewness and kurtosis are much more com-
mon than previously reported: 38 % of distributions have
negative skewness and 47 % have negative kurtosis. This
could be due to the number of likert measures provided, but
because of the anonymous submission option this cannot
be confirmed. The mean univariate skewness is 0.51, and
the sample size-weighted mean is 0.47. The mean univari-
ate kurtosis is 4.29, and the sample size-weighted mean is
8.41. Sample size-weighted means are helpful because we
expect sample measures to better-reflect that of the popula-
tion as sample size increases. To account for this, measures
from large samples are given higher weight than those from
smaller samples. Therefore, on average, the skewness and
kurtosis are larger than that of a normal distribution. To
further visualize what these distributions look like, Fig. 3

Table 1 Univariate skewness and kurtosis

n ≤ 106 n > 106 Overall

Percentile Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

(a) Skewness and kurtosis by sample size

Minimum −4.35 −2.20 −10.87 −1.99 −10.87 −2.20

1st −1.68 −1.79 −2.68 −1.56 −2.08 −1.70

5th −1.10 −1.28 −1.27 −1.28 −1.17 −1.28

25th −0.33 −0.60 −0.33 −0.52 −0.33 −0.57

Median 0.27 0.02 0.15 0.12 0.20 0.07

75th 0.91 1.35 1.00 2.12 0.94 1.62

95th 2.25 5.89 3.56 19.39 2.77 9.48

99th 4.90 30.47 10.81 154.60 6.32 95.75

Maximum 6.32 40.00 25.54 1,093.48 25.54 1,093.48

(b)Percent of significant skewness and kurtosis by sample size

n ≤ 106 n > 106 Overall

Skewness 51 82 66

Kurtosis 33 77 54

Either 56 95 74

There were 805 distributions with n ≤ 106 and 762 with n > 106. Nonnormality is defined by significant statistics ZG1 or ZG2 , p < .05
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Fig. 3 Histograms of 20 randomly selected distributions collected for review

shows histograms of 20 randomly selected distributions
from our review. Note that there is no common shape that
explains skewness or kurtosis.

Percentages of univariate distributions with significant
skewness or kurtosis by sample size are presented in Table 1.
About 66 % of univariate distributions had significant skew-
ness and 54 % had significant kurtosis. Almost 74 % of dis-
tributions had either significant skewness or kurtosis and were
therefore classified as nonnormal. As expected, it becomes
easier for tests to become significantwith larger sample sizes.
Over 95 % of distributions with sample sizes greater than the
median sample size, 106, were tested as nonnormal.
Conversely, when the sample size was less than 106 only
56 % of distributions were significantly nonnormal.

Multivariate Skewness and Kurtosis

The 254 collected Mardia’s multivariate skewness ranged
from 0 to 1,332 and multivariate kurtosis from 1.80 to

1,476. Percentiles of Mardia’s skewness and kurtosis split
by median sample size and median number of variables
used in their calculation are presented in Table 2. The
correlation between sample size and Mardia’s skewness
is r = −0.01 and with Mardia’s kurtosis is r = 0.02.
The correlation between the number of variables and Mar-
dia’s skewness is r = 0.58 and with Mardia’s kurtosis is
r = 0.73. After centering Mardia’s kurtosis on p(p + 2),
the expected value under normality, the correlation between
kurtosis and the number of variables becomes r = 0.05.
The mean multivariate skewness is 32.94, and the sam-
ple size-weighted mean is 28.26. The mean multivariate
kurtosis is 78.70, and the sample size-weighted mean is
92.03. Therefore, the average skewness and kurtosis are
greater than that of a multivariate normal distribution. This
has important ramifications especially for SEM, for which
multiple outcome measures are often used and for which
multivariate kurtosis can asymptotically affect standard
errors.
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Table 2 Mardia’s measures by sample size and number of variables

Percentile By Sample Size By # of Variables Overall

n ≤ 106 n > 106 p ≤ 3 p > 3

(a) Mardia’s Skewness

Minimum 0.01 0.00 0.00 0.02 0.00

1st 0.03 0.00 0.00 0.43 0.00

5th 0.23 0.02 0.03 1.08 0.035

25th 1.15 0.35 0.33 5.72 0.76

Median 3.04 3.26 1.14 1.40 3.08

75th 13.91 14.92 2.95 44.43 14.32

95th 124.97 107.54 23.97 211.31 112.82

99th 635.90 496.77 343.60 786.84 610.66

Maximum 1,263.60 796.92 496.77 1,263.60 1,263.60

(b) Mardia’s Kurtosis

b2,p b∗
2,p b2,p b∗

2,p b2,p b∗
2,p b2,p b∗

2,p b2,p b∗
2,p

Minimum 2.19 −90.50 1.99 −18.57 2.00 −7.77 15.09 −90.50 1.99 −90.50

1st 2.23 −61.02 2.34 −15.43 2.20 −7.72 18.90 −63.61 2.23 −54.55

5th 3.35 −23.59 2.79 −7.51 2.39 -3.74 22.26 −30.83 2.92 −17.01

25th 8.08 −2.33 8.81 0.26 7.02 −0.82 37.76 −2.38 8.26 −1.35

Median 14.24 −0.70 31.69 5.37 8.71 0.26 60.86 5.55 18.90 0.59

75th 43.00 2.22 90.89 29.32 14.84 2.34 153.3 27.36 56.69 7.47

95th 190.1 28.18 419.4 179.25 52.69 44.54 614.4 119.3 323.1 98.17

99th 942.6 87.45 755.4 732.9 384 369 1,356 719.4 914.9 541

Maximum 1,476 108.1 1,392 1,368 556 541 1,476 1,368 1,476 1,368

There were 136 multivariate distributions with n ≤ 106, 118 with n > 106, 144 with p ≤ 3, and 110 with p > 3. b∗
2,p is b2,p centered on p(p+2)

Percentages of multivariate distributions with significant
Mardia’s skewness and kurtosis are presented in Table 3.
About 58 % of multivariate skewness measures and 57 % of
multivariate kurtosis measures reached significance. Com-
bining these, 68 % of multivariate distributions were signif-
icantly nonnormal. In particular, 94 % of Mardia’s measures

were statistically significant when the sample size was
larger than 106. Similarly, more Mardia’s measures became
significant with more variables.

To summarize, based on the test of 1,567 univariate
and 254 multivariate skewness and kurtosis from real data,
we conclude that 74 % of univariate data and 68 % of

Table 3 Percent significant Mardia’s skewness and kurtosis at significance level 0.05

By Sample Size By # of Variables Overall

n ≤ 106 n > 106 p ≤ 3 p > 3

Skewness 34 86 53 65 58

Kurtosis 35 82 47 70 57

Either 46 94 60 79 68

There were 136 multivariate distributions with n ≤ 106, 118 with n > 106, 144 with p ≤ 3, and 110 with p > 3. Nonnormality is defined by
significant statistics z1,p or z2,p , p < .05
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multivariate data significantly deviated from a univariate or
multivariate normal distribution. In examining only those
univariate measures included in a multivariate measure,
68 % have significant nonnormality. Therefore, nonnormal-
ity is a severe problem in real data, though multivariate
nonnormality does not appear to be a severe problem above
and beyond that of univariate normality. However, this
relationship requires further study to evaluate.

Influences of skewness and kurtosis

In order to clearly show the influence of skewness and kur-
tosis, we conducted simulations on the one-sample t-test,
simple regression, one-way ANOVA, and confirmatory fac-
tor analysis (CFA). Simulation studies are useful because
when data is generated from a specific model we know what
results the statistical tests should show, and so we can evalu-
ate how nonnormality affects those results. Note that for all
of these models, the interest is in the normality of the depen-
dent variable(s). There are no normality assumptions put on
the independent variables.

Influence of univariate skewness and kurtosis

Yuan et al. (2005) show that the properties of mean esti-
mates are not affected by either skewness or kurtosis asymp-
totically, but that the standard error of sample variance
is a function of kurtosis. If normality is assumed (kur-
tosis = 0), the standard error of sample variance will be
underestimated when kurtosis is positive and overestimated
when kurtosis is negative. In other words, kurtosis will still
have an effect on variance estimates at very large sam-
ple sizes while mean estimates are only affected in small
samples. For example, Yanagihara and Yuan (2005) found
that the expectation and variance of the t-statistic depends
on skewness, but that the effect lessens as sample size
increases.

To concretely demonstrate the influence of univariate
skewness and kurtosis, we conducted a simulation study on
a one-sample t-test. In the simulation, we set the skewness
to the 1st, 5th, 25th, 50th, 75th, 95th, and 99th percentiles
of univariate skewness found in our review of practical
data. These were tested in sample sizes of the 5th, 25th,
50th, 75th, and 95th percentiles of sample size found in our
review. Therefore, these conditions should represent typi-
cal results found in our field. Because kurtosis has little
influence on the t-test, it was kept at the 99th percentile,
95.75, throughout all conditions. In total, we considered 35
conditions for each test. Under each condition, we gener-
ated 10,000 sets of data with mean 0, variance 1, and the

specified skewness and kurtosis from a Pearson distribution
in R (R Core Team, 2016) using the package PearsonDS
(Becker & Klößner, 2016).7 Then, we obtained the empir-
ical type I error rate to reject the null hypothesis that
the population mean is equal to 0 using the significance
level 0.05 in a two-tailed, a lower-tail, and an upper-tail
one-sample t-test.

Table 4 displays the empirical type I error rate for each
condition. For brevity, type I error rates of just the low-
est sample size are presented for conditions with skewness
between -1.17 and 0.94 because these conditions did not
present any problems. To better understand the empirical
type I error rate, we bold those that are outside of the range
[0.025, 0.075]. When the skewness and kurtosis are 0, the
generated data are from a normal distribution and the empir-
ical type I error rate is close to 0.05 even when the sample
size is as small as 18 for all three tests. When data devi-
ate from normality, the results show that a two-sided test is
more robust than a one-sided test. The two-sided test only
has increased type I error rate for a skewness of 6.32, for
which a sample size of 554 is necessary to dissipate the
effect. A lower tail t-test has even higher type 1 error rates at
this skewness, and an upper tail t-test has an increased type
I error rate with negative skewness and very low rates with
high positive skewness.

A simple regression and a one-way ANOVA with three
groups were also tested at all of these conditions. The
regression was robust to all conditions, even at the lowest
sample size. Type 1 error rate for the ANOVA gets as low as
0.022 under the most extreme skewness (6.32) at the lowest
sample size (18). However, all other type I error rates were
within the [0.025,0.075] robustness range. Type I error rates
can increase if each population is from a different distribu-
tion, but as long as each distribution has equal variances the
departures are still not too severe. Influence on power, how-
ever, can be immense (See Levine and Dunlap (1982), for
example).

Influence of multivariate skewness and kurtosis

In order to show the influence of multivariate skewness
and kurtosis, we conducted simulation studies on CFAs.
First, we focus on a one-factor model with four manifest
variables. For each manifest variable, the factor loading
is fixed at 0.8 and the uniqueness factor variance is 0.36.
The variance of the factor is set to 1. Note that the expected
Mardia’s kurtosis is p(p + 2). When kurtosis = 24 data are

7Pearson distribution includes a class of distributions. It is used here
because it allows us to vary the skewness and kurtosis while the mean
and variance remain the same.
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Table 4 Type I error rates of the one-sample t-test

Tail Tested

Sample Size Skewness Two-tailed Lower-tail Upper-tail

18 −2.08 0.057 0.029 0.079

48 −2.08 0.055 0.033 0.072

105 −2.08 0.052 0.037 0.065

555 −2.08 0.050 0.043 0.058

1488 −2.08 0.050 0.046 0.057

18 −1.17 0.048 0.035 0.064

18 −0.33 0.046 0.045 0.053

18 0.20 0.045 0.051 0.046

18 0.94 0.049 0.061 0.038

18 2.77 0.064 0.092 0.023

48 2.77 0.060 0.082 0.027

105 2.77 0.056 0.075 0.031

555 2.77 0.050 0.062 0.039

1488 2.77 0.052 0.059 0.045

18 6.32 0.177 0.216 0.005

48 6.32 0.123 0.157 0.011

105 6.32 0.090 0.120 0.016

555 6.32 0.062 0.081 0.028

1488 6.32 0.055 0.069 0.035

Bolded entries are those outside of the range [0.025,0.075] and are therefore considered different from the nominal 0.05

from a multivariate normal distribution, and the centered
kurtosis is 0. Although in our review of practical data about
half of the data sets had centered Mardia’s kurtosis less than
0, 21 is the only multivariate kurtosis less than 24 we were
able to successfully simulate. Hence, we used these two val-
ues of Mardia’s kurtosis (21 and 24) along with the 75th,
95th, and 99th percentiles of Mardia’s kurtosis found in our

review of practical data of four manifest variables (30, 60,
and 100). Sample sizes of 48, 106, 554, and 1489 were used
to evaluate these conditions. Because skewness does not
influence SEM asymptotically, it was kept at 0 throughout
all conditions. In total, 20 conditions were considered. 1,000
data sets were used to evaluate each condition. The authors
are currently unaware of any method to simulate data with

Table 5 Type I error rates of the χ2 test for factor analysis with 4 manifest variables

Sample Size

Kurtosis Centered Kurtosis 48 106 554 1489

21 −3 0.061 0.058 0.060 0.060

24 0 0.053 0.046 0.048 0.050

30 6 0.055 0.052 0.055 0.056

60 36 0.108 0.121 0.149 0.152

100 76 0.161 0.215 0.287 0.298

Bolded entries are those outside of the range [0.025,0.075] and are therefore considered different from the nominal 0.05



Behav Res

a particular multivariate skewness and kurtosis, so instead
we used the R package lavaan (Rosseel, 2012) to simu-
late data from a model with certain univariate skewness and
kurtosis. Appropriate univariate values were found to simu-
late multivariate values of a population by trial and error.

The influence of skewness and kurtosis is evaluated
through the empirical type I error rate of rejecting the fac-
tor model using the normal-distribution-based chi-squared
goodness-of-fit test. This test is significant when the model
does not fit the data. Because the true one-factor model
was fit to the simulated data, one would expect the empir-
ical type I error rate to be close to the nominal level 0.05.
Deviation from it indicates the influence of skewness and
kurtosis. The empirical type I error rates at different levels
of Mardia’s kurtosis are summarized in Table 5.

The results show that when the data are from a multivari-
ate normal distribution (kurtosis = 24), the empirical type I
error rates were close to the nominal level 0.05. However,
when the data deviate from a multivariate normal distribu-
tion to a Mardia’s kurtosis of 60, the empirical type I error
rates are all greater than 0.05. Unsurprisingly, the problem
becomes worse with an increase in sample size. For exam-
ple, when the multivariate kurtosis is 100 and the sample
size is 1489, the normal-distribution-based chi-squared test
rejects the correct one-factor model 29.8 % of the time.

Type 1 error rates were also obtained in a one-factor
model with eight manifest variables and a two-factor model
with four manifest variables each to investigate the effects
of an increase in the number of manifest variables or num-
ber of factors. Factor loadings were adjusted to maintain
uniqueness factor variance at 0.36 and total variance at 1.

The same conditions were tested as in the simulation study
above, with the exception of those with a sample size of 48.
The same univariate kurtoses were used to simulate the data,
though they result in different multivariate kurtosis for eight
variables than they do for four. The resulting empirical type
I error rates of these multivariate kurtoses for both of these
models are given in Table 6.

Once again, type I error is maintained when the distribu-
tion is multivariate normal (kurtosis = 80), but once kurtosis
reaches 150 all type I errors are above 0.05. As sample size
increases, the problem worsens. In comparison to the results
shown in Table 5, type I errors are worse with an increase
in the number of manifest variables. However, holding the
number of manifest variables constant, an increase in the
number of factors lowers type I error rate.

In summary, if either univariate or multivariate non-
normal data are analyzed using normal-distribution-based
methods, it will lead to incorrect statistical inference. Given
the prevalence of nonnormality as we have shown in the
previous section, it is very important to quantify the nonnor-
mality. We suggest using skewness and kurtosis to measure
nonnormality and we will show how to obtain both uni-
variate and multivariate skewness and kurtosis in the next
section.

Computing univariate and multivariate skewness
and kurtosis

In this section, we illustrate how to compute univariate
and multivariate skewness and kurtosis in popular statistical

Table 6 Empirical Type I error rates of the χ2 test for factor analysis with 8 manifest variables

Sample Size

# of Factors Kurtosis Centered Kurtosis 106 554 1489

1 75 −5 0.0654 0.0695 0.0688

80 0 0.0533 0.0528 0.0502

90 10 0.0546 0.0591 0.0574

150 70 0.191 0.2449 0.2603

250 170 0.4159 0.5847 0.6373

2 75 −5 0.0861 0.0675 0.0609

80 0 0.0729 0.0549 0.0522

90 10 0.0781 0.061 0.0597

150 70 0.1664 0.1695 0.1652

250 170 0.3134 0.3746 0.4126

Bolded entries are those outside of the range [0.025,0.075] and are therefore considered different from the nominal 0.05
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software including SAS, SPSS, and R as well as a newly
developed Web application. As previously mentioned, dif-
ferent softwares produce different types of univariate skew-
ness and kurtosis. Furthermore, most don’t report tests or
multivariate measures. Using our software and macros for
SAS, SPSS, and R produces consistent and full results
across software. Some software requires macros that can
be downloaded from our website at http://w.psychstat.org/
nonnormal. Our Web application can be found at http://w.
psychstat.org/kurtosis. All tools provided perform listwise
deletion before assessing nonnormaltiy. As an example, we
use a subset of data from the Early Childhood Longitudinal
Study, Kindergarten Class of 1998-99 (ECLS-K) to show
the use of different software. The ECLS-K is a longitudi-
nal study with data collected in kindergarten in the fall and
spring of 1998-99, in 1st grade in the fall and spring of

1999-2000, in 3rd grade in the spring of 2002, in 5th grade
in the spring of 2004, and in 8th grade in the spring of 2007.
The data used here consist of four consecutive mathemati-
cal ability measures of 563 children from kindergarten to 1st
grade. To simplify our discussion, we assume that all files
to be used are in the folder of “C:\nonnormal”, which needs
to be changed accordingly.

SAS

To use SAS for computing the univariate and multivariate
skewness and kurtosis, first download the mardia.sas macro
file from our website. Our macro was modified from a SAS
macro MULTNORM provided by the SAS company. After
saving the sas macro file, the following code can be used to
get the skewness and kurtosis for the ECLS-K data.8

8The number on the right is used to identify the code only and is not
part of the SAS code.

In the SAS input, Line 1 through Line 4 read the ECLS-
K data in the file “eclsk563.txt” into SAS. Line 5
includes the SAS macro file downloaded from our web-
site for use within SAS. The sixth line uses the function
mardia in the macro to calculate skewness and kurtosis.
The argument “data=” specifies the SAS database to use
and “var=” specifies the variables to use in calculating the
skewness and kurtosis.

The SAS output from the analysis of the ECLS-K data is
given below. The first part of the output, from Line 1 to Line
8, displays the univariate skewness and kurtosis as well as
their corresponding standard error. For example, the skew-
ness for the ECLS-K data at time 1 is 0.69 with a standard
error 0.10 (Line 5). Based on a z-test, one would conclude
that the skewness is significantly larger than 0. For another
example, the kurtosis for the data at time 4 is 1.29 with

a standard error 0.21 (Line 8), indicating the kurtosis is
significantly larger than 0.

The second part of the output, from Line 10 to Line
23 includes the information on multivariate skewness and
kurtosis. First, the multivariate skewness is 2.26 (Line 16)
with a standardized measure of 212.24 (Line 17). The p-
value for a chi-squared test is approximately 0 (Line 18).
Therefore, the multivariate skewness is significantly larger
than 0. Second, the multivariate kurtosis is 25.47 (Line 21)
with the standardized measure of 2.51 (Line 22). The p-
value for a z-test is approximately 0.01 (Line 23). Therefore,
the multivariate kurtosis is significantly different from that

http://w.psychstat.org/nonnormal
http://w.psychstat.org/nonnormal
http://w.psychstat.org/kurtosis
http://w.psychstat.org/kurtosis
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of a multivariate normal distribution with 4 variables (24).
Consequently, the data do not follow a multivariate normal

distribution and therefore violate the normality assumption
if used in multivariate analysis.
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SPSS

DeCarlo (1997b) has developed an SPSS macro to cal-
culate multivariate skewness and kurtosis.9 We slightly
modified the macro to make the output of univariate skew-
ness and kurtosis consistent to other software. To use the
SPSS macro, first download the macro file mardia.sps to
your computer from our website. Then, open a script editor
(File->New->Syntax) within SPSS and include the follow-
ing SPSS script.

9The original macro can be downloaded at http://www.columbia.edu/
ld208/Mardia.sps.

The code on the first eight lines in the input is used to read
the ECLS-K data into SPSS. These lines are not necessary
if your data are already imported into SPSS. Line 10 gets
the SPSS macro into SPSS for use. The function mardia
calculates univariate and multivariate skewness and kurtosis
for the variables specified by the vars option on Line 11.
Note that the folder to the data file and the SPSS macro
file needs to be modified to reflect the actual location of
them.

The SPSS output from the analysis of the ECLS-K data
is given below. Similar to the SAS output, the first part of

the output includes univariate skewness and kurtosis and
the second part is for the multivariate skewness and kurto-
sis. SPSS obtained the same skewness and kurtosis as SAS
because the same definition for skewness and kurtosis was
used.

http://www.columbia.edu/ ld208/Mardia.sps
http://www.columbia.edu/ ld208/Mardia.sps
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R

To use R, first download the R code file mardia.r to
your computer from our website. Then, in the editor of
R, type the following code. The code on Line 1 gets the

ECLS-K data into R and Line 2 provides names for
the variables in the data. The third line loads the R
function mardia into R. Finally, the last line uses
the function mardia to carry out the analysis on
Line 4.
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The output from the R analysis is presented below.
Clearly, it obtains the same univariate and multivariate

skewness and kurtosis as SAS and SPSS.
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Fig. 4 Interface of the Web application

Web Application for Skewness and Kurtosis

To further ease the calculation of univariate and multivariate
skewness and kurtosis, we also developed aWeb application
that can work within a Web browser and does not require
knowledge of any specific software. The Web application
utilizes the R function discussed in the previous section to
obtain skewness and kurtosis on a Web server and produces
the same results as SAS, SPSS, and R.

To access the Web application, type the URL http://
psychstat.org/kurtosis in a Web browser and a user will see
an interface as shown in Fig. 4. To use the Web applica-
tion, the following information needs to be provided on the
interface.

Data

The data file can be chosen by clicking the “Choose File”
button10 and locating the data set of interest on the local
computer.

Type of data

TheWeb application allows commonly used data types such
as SPSS, SAS, Excel, and text data. To distinguish the
data used, it recognizes the extension names of the data
file. For example, a SPSS data file ends with the extension
name .sav, a SAS data file with the extension name

10Note that different operating systems and/or browsers might show
the button differently. For example, for Internet Explorer, the button
reads “Browse...”.

.sas7bdat, and an Excel data file with the extension
name .xls or .xlsx. In addition, a CSV file (comma sep-
arated value data file) with the extension name .csv and a
TXT file (text file) with the extension name .txt can also
be used. If a .csv or .txt file is used, the user needs to
specify whether variable names are included in the file. For
Excel data, it requires the first row of the data file to be the
variable names.

Select variables to be used

Skewness and kurtosis can be calculated on either all the
variables or a subset of variables in the data. To use all the
variables, leave this field blank. To select a subset of vari-
ables, provide the column numbers separated by comma
“,”. Consecutive variables can be specified using “-”. For
example, 1, 2-5, 7-9, 11 will select variables 1, 2, 3,
4, 5, 7, 8, 9, 11.

Missing data

Missing data are allowed in the data although they will be
removed before the calculation of skewness and kurtosis.
This field should be left blank if the data file has no missing
values. If multiple values are used to denote missing data,
they can be specified all together separated by a comma
(,). For example, -999, -888, NA will specify all three
values as missing data.

After providing the required information, clicking the
“Calculate” button will start the calculation of skewness and

http://psychstat.org/kurtosis
http://psychstat.org/kurtosis
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kurtosis. The output of the analysis is provided below. The
output is identical to the R output except for the variable
names for univariate skewness and kurtosis. This is because
by default the variable names are constructed using “V” and
an integer in R.

Discussion and recommendations

The primary goals of this study were to assess the preva-
lence of nonnormality in recent psychology and education
publications and its influence on statistical inference, as
well as to provide a software tutorial on how to compute
univariate and multivariate skewness and kurtosis. First,
nonnormality clearly exists in real data. Based on the test
of skewness and kurtosis of data from 1,567 univariate vari-
ables, much more than tested in previous reviews, we found
that 74 % of either skewness or kurtosis were significantly
different from that of a normal distribution. Furthermore,
68 % of 254 multivariate data sets had significant Mardia’s
multivariate skewness or kurtosis. Our results together with

those of Micceri (1989) and Blanca et al. (2013) strongly
suggest the prevalence of nonnormality in real data.

Our investigation on the influence of skewness and kurto-
sis involved simulation studies on the one-sample t-test and
factor analysis. Through simulation, we concretely showed
that nonnormality, as measured by skewness and kurto-
sis, exerted great influence on statistical tests that bear the
normality assumption. For example, the use of the t-test
incorrectly rejected a null hypothesis 17 % of the time
and the chi-squared test incorrectly rejected a correct factor
model 30 % of the time under some conditions. Therefore,
nonnormality can cause severe problems. For example, a
significant result might be simply an artificial effect caused
by nonnormality.

Given the prevalence of nonnormality and its influence
on statistical inference, it is critical to report statistics such
as skewness and kurtosis to understand the violation of nor-
mality. Thus, we highly recommend that journal editors
and reviewers encourage authors to report skewness and
kurtosis in their papers. In Table 7, we list the summary
statistics that are critical to different statistical methods in
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would be influenced by skewness while factor analysis is
more influenced by kurtosis. To facilitate the report of
univariate and multivariate skewness and kurtosis, we have
provided SAS, SPSS, and R code as well as a Web applica-
tion to compute them.

Once nonnormality has been identified as a problem,
the main options for handling it in a statistical analysis
include transformation, nonparametric methods, and robust
analysis. Transforming data so that they are closer to nor-
mally distributed is a relatively easy option, because after
transformation the researcher can proceed with whichever
normality-based method they desire. In psychology, log
transformation is a common way to get rid of positive skew-
ness, for example. More generally, the class of Box-Cox
transformations (Box and Cox, 1964) is also very pop-
ular because it’s easy to use and can accomodate many
types of nonnormality. However, it has been suggested that
Box-Cox and other transformations seldom maintain linear-
ity, normality, and homoscedasticity simultaneously (Sakia,
1992, for example), and even if transformation is success-
ful the resulting parameter estimates might be difficult to
interpret.

Corder and Foreman (2014) offer an easy-to-follow
review of nonparametric techniques, including the
Mann–Whitney U-test, Kruskal-Wallis test, and Spearman
rank order correlation, among others. The basic premise
of most of these methods is to perform analysis on ranks
rather than the raw data. This is, of course, a more robust
procedure than assuming normality of raw data, but can be
less powerful in some circumstances and the results can be
less meaningful. However, for data that is already ordinal
or ranked these methods can be very useful, and can still be
advantageous in other circumstances, as well.

Robust analysis can work better than transformation and
non-parametric methods in many situations, though histori-
cally it has also been the most difficult to conduct. Robust
analysis can address three points of concern: parameter
estimates, standard errors of those estimates, and test statis-
tics. Within the context of SEM the methods that perform
best in dealing with each of these issues, respectively, are
robust estimation using Huber-type weights (Huber, 1967),
sandwich-type standard errors, and a rescaled chi-squared
statistic following robust estimation (Yuan & Bentler,
1998). Alternatively, one can also obtain sandwich-type
standard errors and rescaled test statistics following normal
distribution-based maximum likelihood (Satorra & Bentler,
1988), and such a procedure will still yield consistent results
when data are of heavier tails but do not contain outliers.

Recently, some software packages have begun to include
these procedures, making robust analysis a much easier
option than it has ever been before. Currently, EQS (Mul-
tivariate Software, Inc.), WebSEM (Zhang & Yuan, 2012),
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and the R package rsem (Yuan & Zhang, 2012) are the
only softwares to offer truly robust methods that address
all three points of concern (parameter estimates, standard
errors, and test statistics), andWebSEM and rsem offer them
for free. Additionally, WebSEM has a user-friendly inter-
face in which researchers can draw the path diagram they
wish to fit.

As shown in Fig. 3, there is no common distribution
of practical data in psychology and education. With such
diversity in data shapes and research goals, it is impossi-
ble to create one universal solution. However, we hope that
through this paper we were able to elucidate the problem
through our review of practical data and simulation and
offer some feasible recommendations to researchers in our
field. It is our hope that researchers begin to take nonnor-
mality seriously and start to report them along with means
and variances that have already been established in data
analysis. We believe that reporting skewness and kurtosis
in conjunction with moving toward robust analysis offer
two high-impact changes that can be made in the litera-
ture at this time. These actions will not only increase the
transparency of data analysis, but will also encourage quan-
titative methodologists to develop better techniques to deal
with nonnormality, improve statistical practices and con-
clusions in empirical analysis, and increase awareness and
knowledge of the nonormality problem for all researchers in
our field.
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