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Abstract 

Multilevel modeling is a statistical approach to analyze hierarchical data, which consist of 

individual observations nested within clusters. Bayesian methods is a well-known, sometimes 

better, alternative of Maximum likelihood methods for fitting multilevel models. Lack of user-

friendly and computationally efficient software packages or programs was a main obstacle in 

applying Bayesian multilevel modeling. In recent years, the development of software packages 

for multilevel modeling with improved Bayesian algorithms and faster speed has been growing. 

This article aims to update the knowledge of available software packages for Bayesian multilevel 

modeling and therefore to promote the use of these packages. Three categories of software 

packages capable of Bayesian multilevel modeling including brms, MCMCglmm, glmmBUGS, 

Bambi, R2BayesX, BayesReg, R2MLwiN and others are introduced and compared in terms of 

computational efficiency, modeling capability and flexibility, as well as user-friendliness. 

Recommendations to practical users and suggestions for future development are also discussed. 

Keywords: Bayesian computer software, MCMC, multilevel modeling, R packages
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Review of Software Packages for Bayesian Multilevel Modeling 

Multilevel modeling (also known as analysis of hierarchical or mixed-effects models) is a 

statistical approach to analyze hierarchical data that consist of individual observations nested 

within clusters/groups/sites (Goldstein, 2011; Kreft, Kreft, & de Leeuw, 1998). Common 

examples of hierarchical data include clustered cross-sectional data (Broström & Holmberg, 

2011), longitudinal data (Wang, 2016), repeated-measures data (Goldstein, Healy, & Rasbash, 

1994), and spatial data (Banerjee, Carlin, & Gelfand, 2014). The most well-known techniques for 

fitting multilevel models include variations of maximum likelihood (ML) and empirical 

Bayesian estimators (Goldstein, 2011). ML-based methods, with sophisticated implementation in 

software packages (see Bates, Mächler, Bolker, & Walker, 2014; Peugh & Enders, 2005; West & 

Galecki, 2011), have been frequently employed in applications (Dedrick et al., 2009). While 

Bayesian methods are still less widely used (Dedrick et al., 2009), it offers a number of 

advantages, such as small sample size requirement (Austin, 2010; Dedrick et al., 2009), 

flexibility to specify complex models like non-normal random-effect models (Lee & Thompson, 

2008; Zhang, 2016), and benefits from using empirical information (e.g., Harbord, Whiting, et 

al., 2009; Zhang, Hamagami, Wang, Nesselroade, & Grimm, 2007). Major obstacles in applying 

Bayesian multilevel modeling include its time-consuming process and lack of user-friendly 

software packages or programs (Dedrick et al., 2009; Karabatsos, 2017; Rue et al., 2017). 

In recent years, the steady improvement of computer hardware speed and efficiency of 

Bayesian algorithms (e.g., integrated nested Laplace approximation; Rue, Martino, & Chopin, 

2009) as well as the attentiveness to Bayesian estimation of complex multilevel models (e.g., 

Aguero-Valverde, 2013; Chagneau, Mortier, Picard, & Bacro, 2011; Han & Chaloner, 2004; 

Pang, 2010) have inspired a surge in the development of software packages for Bayesian 
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multilevel modeling (e.g., Buerkner, 2017; Correia, Tura, & Lanzillotti, 2016; Grant, Carpenter, 

Furr, Gelman, et al., 2017; Leckie, Charlton, et al.,2013; Rue et al., 2017). In this article, we aim 

to review the available software packages for Bayesian multilevel modeling and therefore hope 

to promote the use of these packages in scientific research. In the following, we first introduce 

three categories of software packages and compares their technical features and user-friendliness. 

Then, we provide recommendations to practical users for the choice of difference packages and 

discuss directions for future development. 

Three Categories of Software Packages 

According to the analysis purposes we group the software packages available for 

Bayesian multilevel modeling into three categories: Category A for general purpose Bayesian 

analysis, categorical B for general purpose Bayesian multilevel modeling, and category C for a 

particular type of multilevel models. 

Category A: General Purpose Software Packages 

The software packages in category A are general purpose ones for Bayesian analysis not 

limiting to certain types of models. The BUGS projects (Gilks, Thomas, & Spiegelhalter, 1994) 

including WinBUGS (D. Spiegelhalter, Thomas, Best, & Lunn, 2003) and OpenBUGS (D. 

Spiegelhalter, Thomas, Best, & Lunn, 2014) along with the corresponding R interface 

R2WinBUGS/R2OpenBUGS (Sturtz, Ligges, & Gelman, 2005) and a web interface WebBUGS 

(Zhang, 2014) have been the most well-known and widely used in the last few decades. Similar 

software programs include JAGS (Plummer, 2017) with the R interface rjags (Plummer, 

Stukalov, & Denwood, 2016), SAS MCMC (Chen, Brown, & Stokes, 2016), Stan (Luo & Jiao, 

2017) along with the R interface rstan (Guo et al., 2017), and R–INLA (or INLA; Lindgren & 

Rue, 2015; Rue, Martino, Lindgren, Simpson, & Riebler, 2013). LaplacesDemon (Hall, 2016) 
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and MultiBUGS (Goudie, Turner, De Angelis, & Thomas, 2017) are the most recent published 

packages in this category. 

Popularity. Table 1 presents the utilization of various software packages in Bayesian 

multilevel modeling in the recent years. The results were based on a collection of 92 applied 

studies between 2012 and 2016. About 70% of the studies used general purpose Bayesian 

software packages. About 26% of the studies developed their own programs to perform the 

analyses. BUGS and self-implemented R programs were the dominant tools employed in the 

reviewed studies. The data in the table also suggested that Matlab programs were the major tool 

used in neuroscience studies. 

 Computational efficiency. Each alternative of BUGS was developed with aims to 

improve the Bayesian algorithms and the computing speed, either by optimizing the algorithms 

themselves or implementing the algorithms in a faster language (see Table 2 for details). Various 

Markov Chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler (Gelfand, 2000), 

Metropolis–Hastings (Chib & Greenberg, 1995), and slice samplings (Neal, 2003) are built in 

BUGS. JAGS implements the BUGS algorithms with C++ language to improve the computing 

speed. Stan (rstan) implements two computationally more efficient MCMC algorithms, 

Hamiltonian Monte Carlo (HMC; Neal, 1993) and No-U-Turn sampler (NUTS; Hoffman & 

Gelman, 2014). Due to the nature of MCMC algorithms, however, as the model complexity and 

the sample size increase, the computing time increases dramatically. Thus, to reduce the running 

time of MCMC, MultiBUGS implements an algorithm to allow parallel computing for sampling 

a single chain (Goudie et al., 2017), which is a good solution for researchers having access to 

high-performance computers or systems. In a similar way, R-INLA adopts a non-MCMC 

algorithm to approximate Bayesian inference, the integrated nested Laplace approximation 
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(INLA) approach. In general, the INLA approach can provide good or even exact approximation 

while reducing computational costs substantially (Rue et al., 2017). 

Supported models and priors. In general, the general-purpose Bayesian software 

packages allow users to specify “unlimited” types of multilevel models and to flexibly customize 

the parameter priors of various distributions (Lunn, Spiegelhalter, Thomas, & Best, 2009). 

Nevertheless, this is not true for packages using Laplace approximation such as R-INLA. 

Although R-INLA supports a large number of models (e.g., latent models including several 

spatial models) and allow specifying more complex models (Gómez-Rubio & Rue, 2017), R-

INLA is not as flexible as BUGS or other MCMC software packages in using complex 

hierarchical prior structures or handling models with a large number of hyper-parameters 

(Carroll et al., 2015; Umlauf, Adler, Kneib, Lang, & Zeileis, 2015). 

User-friendliness. A fundamental reason behind the popularity of general purpose 

Bayesian software packages is their flexibility to estimate many different kinds of models. A 

disadvantage coming with the flexibility is the steep learning curve for users who do not have a 

good understanding of Bayesian methodology. First, many of these software packages do not 

provide default model templates or prior types (as shown in Table 3). Therefore, users need to 

specify the models in detail. Since any model can be specified regardless of whether it makes 

sense or not, when the models are not specified as expected the users may not realize the 

mistakes. Second, many of these software packages do not offer optimized algorithms for 

different models, users are required to understand the features of different algorithms and make a 

choice. Among the software packages in category A, R-INLA is an exception in that it provides 

routine functions as well as default prior types and values. Thus, it is relatively user-friendly. 

Importantly, all the software packages in this category have outstanding documentations and 
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good maintenance to aid the learning for new users. 

Category B: General Purpose Bayesian Multilevel Modeling Software Packages 

Software packages in Category B can be used to analyze a variety of multilevel models 

using Bayesian methods. They include brm with alternative versions rstanarm and rethinking 

(see comparisons by Buerkner, 2017), MCMCglmm (Hadfield et al., 2010), glmmBUGS (Brown 

& Zhou, 2010), glmmAK (Komárek & Lesaffre, 2008), blme (Dorie, 2015), and Python Bambi 

(Yarkoni & Westfall, 2016). Other packages consist of functions or options for using Bayesian 

methods to fit multilevel models: R2BayesX (BayesX; Umlauf et al., 2015), MCMCpack 

(Martin, Quinn, & Park, 2011), DPpackage (Jara, Hanson, Quintana, Mueller, & Rosner, 2017), 

Matlab BayesReg (Karabatsos, 2017), Stata bayesmh (Grant, Furr, Carpenter, & Gelman, 2016), 

bayesm (Rossi, 2017), MLwiN (Browne, 2017) with R interface R2MLwiN (Zhang, Parker, 

Charlton, & Browne, 2016), glmmADMB (Bolker, Skaug, Magnusson, & Nielsen, 2016), Mplus 

(Asparouhov & Muthén, 2010), and arm (Gelman et al., 2016). 

Computational efficiency, supported models, priors and outputs. The computational 

efficiency of these software packages is inherited from their Bayesian engines. Whether they 

support parallel computing is also a factor influencing their computational efficiency (see Table 

2). For example, brms that is based on Stan is more computationally efficient than MCMCglmm 

(available in Stata) as shown in a simulation study (Buerkner, 2017). Another simulation study 

(Grant et al., 2016) showed that the Stan Bayesian engine also outperforms Stata’s bayeshm. 

In terms of model specification, these software packages are generally not as flexible as 

those in category A. Table 4 lists the major types of multilevel models supported by each 

package. Most of these software packages only support a limited number of models. Among 

these software packages, brms, MCMCglmm, R2BayesX, R2MLwiN, and Mplus Bayes support 
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almost all the common types of multilevel models. With additional capability, R2BayesX can 

handle generalized additive mixed models with a large number of parameters and large datasets 

(e.g., more than 1000 parameters and 200,000 observations; see Brezger & Lang, 2006). While 

packages, such as glmmBUGS, Bambi, MCMCpack, bayesmh and R2MLwiN allow users to 

customize a new model through writing scripts. For prior options, brms, Bambi, and R2MLwiN 

support various types of distributions, while others only support one type or a few types of 

distributions. 

Most of the software packages can output regular summary statistics and plots for 

convergence diagnostics. For goodness of fit indices, MCMCglmm, R2BayesX, MCMCpack, 

R2MLwiN, and arm output the deviance information criterion (DIC; D. J. Spiegelhalter, Best, 

Carlin, & Van Der Linde, 2002), while brms and Bambi both provide Watanabe-Akaike 

information criterion (WAIC; Watanabe, 2010) as well as Bayes’ factors (Kass & Raftery, 1995). 

User-friendliness. Different from the software packages in category A, the software 

packages in category B are relatively easy to use for applied researchers (see Table 3). First, all 

these software packages provide default model templates or routine functions for the 

convenience of users. Some of these software packages employ lme4 or lme4-like formulas to 

specify models, which is definitely an advantage for users with experience using lme4, the most 

widely used R package for multilevel modeling. Particularly, Matlab’s BayesReg has a graphical 

interface that allows users to specify a model through interactive windows and MLwiN, the back 

end of R2MLwiN, uses a menu-driven interface for model specifications. On the contrary, 

bayesmh is relatively difficult for novel users as it uses Stata scripts to define models. Second, 

most of these software packages offer the default distribution types and parameter values for 

priors. As exceptions, glmmAK and DPpackage require users to specify the parameter values of 
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the pre-determined distributions of priors so that the users can specify informative priors based 

on empirical information. Third, most packages use default Bayesian algorithms that usually are 

optimized for certain types of models. They also have very good documentations and are well-

maintained through frequent updates. 

Category C: Software Packages for a Particular Type of Bayesian Multilevel Models 

The software packages in category C are tailored for a particular type of Bayesian 

multilevel models. Specifically, Bayesthresh (Correa & de Sousa Bueno Filho, 2015) is 

developed to deal with ordinal categorical responses; bayesSurv (Komárek, 2017) is capable of 

analyzing survival regression models with flexible error and random effects distributions; mlirt 

(Fox, 2007) is for multilevel unidimensional item response theory (IRT) modeling for 

dichotomous or polytomous data; mirt (Chalmers, 2012) can estimate either unidimensional or 

multidimensional latent trait models with random effects under the IRT paradigm for either 

dichotomous or polytomous responses; bspmma (Burr, 2012) is designed for meta-analysis; 

ctsem (Driver, Voelkle, & Oud, 2017) is for multivariate continuous (and discrete) time dynamic 

modelling; and SpatialExtremes (Ribatet, 2017) and spatial.gev.bma (Lenkoski, 2014) are both 

for modeling spatial data. 

The software packages in category C do not have much flexibility in terms of prior types 

and options of Bayesian algorithms. They use lme4 or lme4-like formulas or routine functions 

with pre-determined prior types and default values for model specification. Most of the software 

packages have very good documentations, but not as good as packages in the other two 

categories in terms of updates and maintenance. For example, mlirt currently only has available 

releases for R version ≤ 2.15 and bspmma did not update after 2012. 

Recommendations and Suggestions 
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Recommendations to Users 

There is no universally best software package for Bayesian multilevel modeling. Instead, 

a user should choose a program based on their research purpose and goal. For example, if a user 

is interested in developing new multilevel models, learning how to use a general purpose 

program, such as BUGS or Stan in Categorical A might be beneficial in the long term. This is 

because this type of programs allows the specification of new and innovative models beyond the 

existing ones. On the other hand, if the purpose is to conduct a particular kind of multilevel 

analysis, a program in Category B or C might be a better choice. The syntax of such a program is 

usually simple and straightforward. Therefore, one can avoid many common mistakes and save 

time from learning extra technical details and writing complex syntax. In addition, many of the 

programs are R packages. If one is already familiar with R, an R package for multilevel 

modeling is a natural choice. Between programs in Category B and Category C, it might be 

worth the effort to learn one in Category B. Programs in Category B are in general more flexible 

to specify a prior distribution. Furthermore, it supports more types of multilevel models that can 

be helpful to a user in future studies. 

As shown in Table 1, software packages in Category A are still the most popular choices 

in practice, regardless of their disadvantage in user-friendliness and their high demanding on 

understanding the Bayesian methods and programing. One possible reason for this is that 

packages in the other two categories are still less well known. Packages such as brms, 

MCMCglmm, R2BayesX, and R2MLwiN were designed specifically for Bayesian multilevel 

modeling and have friendly user interfaces. We hope this review can help users choose the right 

packages for their research. 

Suggestions to Developers 



 11 
 

As researchers continue to propose new Bayesian algorithms such as INLA within 

MCMC for spatial models (Gómez-Rubio & Palmí-Perales, 2017), new software packages or 

programs are going to be developed. From a user perspective, incorporating the newly developed 

methods into existing packages can be beneficial. However, it would require additional efforts 

for developers. 

Particularly for multilevel modeling, lessons can be learned from software development 

for structural equation modeling (SEM). For example, many different SEM programs are 

available, such as Mplus (Muthén & Muthén, 1998-2017), EQS (Byrne, 1994), LISREL 

(Jöreskog & Sörbom, 1996), SAS CALIS (SAS Institute Inc., 2017), R package lavaan (Rosseel, 

2012), and WebSEM (Zhang, Yuan, & Mai, 2012-2017). Although each program is developed 

independently, they use the same path diagram notations and mostly the reticular action 

modeling (RAM) notations (McArdle, 1979). Therefore, it is easy for a user to switch from one 

program to another. Such practice can be followed in the development of software packages for 

multilevel modeling. 
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Table 1 

Utilization of Software Packages for Bayesian Multilevel Modeling between 2012 and 2016 

Package Counts Proportion Fields 
WinBUGS/R2WinBUGS 39 42% Multidiscipline 
R/S-plus programs 10 11% Multidiscipline 
OpenBUGS 9 10% Multidiscipline 
Matlab programs 7 8% Neuroscience 
C/C++/Python programs 6 7% Disease Preventing/Medical research/Clinical trials/Geography 
R–INLA (INLA) 5 5% Epidemiology/Biology 
JAGS/R2jags 5 5% Macular Degeneration/Seismology 
SAS MCMC 4 4% Ecology/Cancer research/Clinical Psychology 
Stan/rstan 2 2% Biometrics 
ADMB/ADMB-RE 2 2% Fisheries science/Ecology 
Stan brms 1 1% Psychology 
MLwiN 1 1% Social Mobility 
spatial.gev.bma 1 1% Environmetrics 

Note. The data are based on a collection of 92 applied studies published between 2012 and 2016.



 

Table 2 

Technical Options and Features for Modeling 

Package Prior Types Core Bayesian Algorithms Parallel Computing Running 
Environment Bayesian Engine Programming 

Languages 

Category A       

R2WinBUGS/R2OpenBUGS Flexible Gibbs, MH, Slice No R BUGS Component Pascal, R 
rjags Flexible (Adaptative) Gibbs, MH, Slice No R JAGS C++, R 
MultiBUGS Flexible Gibbs, MH, Slice Single chain parallel: multiple cores/APIs Stand alone OpenBUGS Component Pascal 
SAS MCMC Flexible MH, IS Multiple threads SAS SAS MCMC C 
R-INLA (INLA) Flexible INLA Multiple threads R C++ GMRFLib C++, R 
LaplacesDemon Flexible HARM, LaplaceA, INCA, HMC Multiple cores R LaplacesDemon R 
rstan Flexible HMC, NUTS Multiple cores R Stan C++, R 

Categroy B       
brms Flexible HMC, NUTS Multiple cores R Stan C++, R 
MCMCglmm Fixed Gibbs, MH, RWM, Slice — R MCMCglmm C/C++, R 
glmmBUGS Fixed Gibbs, MH, Slice No R R2WinBUGS C++, R 
glmmAK Limited ARG — R glmmAK R 
blme Limited — — R blme R 
Bambi Flexible NUTS, HMC Multiple cores / GPUs Python Python PyMC3 Python 
R2BayesX Fixed Gibbs, RW, P-splines R parallel R BayesX C++, R 
MCMCpack Fixed a generic RWM — R R MCMC C++, R 
DPpackage Fixed MH, IWLS: Model-specific — R DPpackage Fortran 
BayesReg Fixed Gibbs, ARWMH — Matlab Matlab BayesReg Matlab 
bayesmh Limited Gibbs, MH No Stata Stata MCMC C 
bayesm Fixed Gibbs, MH, RWM — R bayesm C++, R 
R2MLwiN Flexible Gibbs, MH, SMVN GPUs R MLwiN MCMC MLwiN macro, R 
glmmADMB Fixed RWM No R AD Model Buider C++, R 
Mplus Bayes Limited Gibbs, MH Multiple cores Stand alone Mplus Bayes Java 
arm Fixed — — R lme4::mcmcsamp R 

Categroy C       
Bayesthresh Fixed — — R Bayesthresh R 
bayesSurv Fixed Slice, ARG — R BayesSurv R 
mlirt Fixed Gibbs, MH within Gibbs — R Fortran IMSL Fortran, R 
mirt Fixed MHRM R parallel R mirt C++, R 
bspmma Fixed — — R bspmma R 
ctsem Fixed NUTS, HMC Multiple cores R Stan C++, R 
SpatialExtremes Fixed Gibbs — R SpatialExtremes R 
spatial.gev.bma Fixed MH — R SpatialExtremes R 

Note. “—” = Not sure. MH = Metropolis–Hastings. IS = Importance sampling. INLA = Integrated nested Laplace approximation. LaplaceA = Laplace 
approximation. HARM = Hit-and-run Metropolis. INCA = Interchain adaptive. HMC = Hamiltonian Monte Carlo. NUTS = No-U-Turn sampler. 
RWM = Random walk Metropolis. ARWMH = Adaptive random-walk Metropolis–Hastings. SMVN = Structured multivariate normal. ARG = 
Adaptive rejection Gibbs. MHRM = Metropolis-Hastings Robbins-Monro. API = Application programming interface. GPU = Graphics processing 
unit.

 



 

Table 3 

Model Specification, Algorithms Selection, Documentation, Installation, Open source, and Updates 

Package 
Model Specification Algorithm 

Default/Custom Documentation Installation 
Dependency/Compiler Open Source Published/ 

Updated Tools Default Priors 
Type/Value 

Categroy A        
R2WinBUGS/R2OpenBUGS BUGS script No/No No/Yes Outstanding WinBUGS/OpenBUGS GNU, GPL-2 2005/2017 
rjags BUGS script No/No No/Yes Outstanding JAGS GNU, GPL-2 2008/2016 
MultiBUGS BUGS script / DAG graph No/No No/Yes Outstanding No GNU 2017/2017 
SAS MCMC SAS script No/No Yes/Yes Outstanding No No 2008/2017 
R-INLA (INLA) formula, matrix, and routine functions Yes/Yes Yes/Yes Outstanding C++ compiler GNU 2011/2017 
LaplacesDemon R script No/No Yes/Yes Very good No MIT 2011/2016 
rstan Stan script No/No Yes/Yes Outstanding StanHeader/C++ compiler New BSD, GPL 2012/2017 
Categroy B        
brms lime4-like formula, function arguments Yes/Yes Yes/Yes Very good StanHeader/C++ compiler GPL >= 3 2015/2017 
MCMCglmm function arguments Yes/Yes Yes/No Very good C++ compiler GPL >= 2 2009/2016 
glmmBUGS formula, function arguments Yes/Yes Yes/No Very good WinBUGS GPL 2008/2016 
glmmAK routine functions and arguments Yes/No Yes/No Very good No GPL-2 2007/2015 
blme lme4 formula, function arguments Yes/Yes Yes/No Very good No GPL >= 2 2011/2015 
Bambi lme4 formula, function arguments Yes/Yes Yes/No Good Python Interpreter MIT 2016/2017 
R2BayesX formula, function arguments Yes/Yes Yes/No Very good BayesXsrc GPL-2 2005/2017 
MCMCpack lme4 formula, function arguments Yes/Yes Yes/No Very good C++ compiler GPL-3 2003/2017 
DPpackage lme4-like formula & function arguments Yes/No Yes/No Very good Fortran compiler GPL >= 2 2006/2017 
BayesReg template math equations Yes/Yes Yes/No Very good Matlab compiler — 2015/2017 
bayesmh Stata script Yes/Yes Yes/Yes Good Stata No 2015/2017 
bayesm routine functions and arguments Yes/Yes Yes/No Very good C++ compiler GPL >= 2 2006/2017 
R2MLwiN lme4-like formula, function arguments Yes/Yes Yes/Yes Outstanding MLwiN GPL >= 2 2012/2017 
glmmADMB lme4-like formula, function arguments Yes/Yes Yes/No Good AD Model Builder BSD_2_CLAUSE 2005/2017 
Mplus Bayes Mplus syntax Yes/Yes Yes/Yes Outstanding No No 2010/2017 
arm lme4 formula Yes/Yes Yes/No Good No GPL >= 3 2007/2016 
Categroy C        
Bayesthresh lme4 formula and function arguments Yes/Yes Yes/No Very good No GPL-3 2012/2013 
bayesSurv lme4-like formula, function arguments Yes/Yes Yes/No Very good No GPL-3 2009/2017 
mlirt a routine function and arguments Yes/Yes Yes/No Very Good No no commercial use 2007/2010 
mirt matrix, routine functions and arguments Yes/Yes Yes/No Very good C++ compiler GPL > = 3 2010/2017 
bspmma function arguments Yes/Yes Yes/No Very Good No GPL-2 2012/2012 
ctsem function arguments Yes/Yes Yes/No Very good rstan/C++ compiler GPL-3 2016/2017 
SpatialExtremes formula, function arguments Yes/Yes Yes/No Very Good No GPL >= 2 2009/2017 
spatial.gev.bma function arguments Yes/Yes Yes/No Good No GPL 2014/2014 

Note. “—” = Not sure. GPL = General Public License. BSD = Berkeley Software Distribution. MIT = Massachusetts Institute of Technology.



 

Table 4 

Supported Multilevel Models by Packages in Category B 

Package 
 Responses  Models 

 Con. Bin. Cou. Ord. Mul. Multivariate Zero-
inflated  Weighted Cross-

classified Survival a Spatial Additive Customization 

brms  Yes Yes Yes Yes No Yes Yes  Yes Yes Yes Yes Yes No 
MCMCglmm  Yes Yes Yes Yes Yes Yes Yes  No Yes Yes No No No 
glmmBUGS  Yes Yes No No No Yes No  No No No Yes No Yes 
glmmAK  No Yes Yes Yes No No No  No No No No No No 
blme  Yes Yes Yes No No No No  Yes Yes No No No No 
Bambi  Yes Yes Yes No No No No  No Yes No No No Yes 
R2BayesX  Yes Yes Yes Yes Yes No No  No Yes Yes Yes Yes No 
MCMCpack  Yes Yes Yes No No No No  No No No No No Yes 
DPpackage  Yes Yes Yes No No Yes No  No — Yes No    No No 
BayesReg  Yes Yes — Yes No — Yes  Yes — Yes Yes Yes No 
bayesmh  Yes Yes — — — — —  — Yes — — — Yes 
bayesm  Yes Yes No Yes Yes Yes Yes  Yes — — — — No 
R2MLwiN  Yes Yes Yes Yes Yes Yes Yes  Yes Yes — Yes No Yes 
glmmADMB  Yes Yes Yes No No — Yes  — No — No No No 
Mplus Bayes  Yes Yes Yes Yes — Yes —  Yes Yes — No No No 
arm  Yes Yes Yes No No No Yes  Yes Yes No No No No 

Note. “—” = Not sure. Con. = Continuous. Bin. = Binary. Cou. = Count. Ord. = Ordinal. Mul. = Multinomial. a. By restructuring and 

transforming the data, standard software packages for multilevel modeling can fit two types of survival models: piecewise exponential (PWE) 

models and discrete time models (Austin, 2017). 

 

 


