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BAYESIAN META-ANALYSIS OF CORRELATION COEFFICIENTS

THROUGH POWER PRIOR

Zhiyong Zhang, Kaifeng Jiang, Haiyan Liu

University of Notre Dame

In-Sue Oh

Fox School of Business, Temple University

Abstract

This paper proposes a Bayesian approach for meta-analysis of correlation coefficients through

power prior. The primary purpose of this method is to allow meta-analytic researchers to eval-

uate the contribution and influence of each individual study to the estimated overall effect size

though power prior. We use the relationship between high-performance work systems and fi-

nancial performance as an example to illustrate how to apply this method. We also introduce

free online software that can be used to conduct Bayesian meta-analysis proposed in this study.

Implications and future directions are also discussed in this article.
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1 INTRODUCTION

Meta-analysis is a statistical method of synthesizing findings from multiple studies to get a more

comprehensive understanding of the population [Hunter and Schmidt, 2004]. A simple way to

synthesize studies is to calculate the weighted average of correlations between two variables

(or differences between two treatments) with a function of the sample size being the weight

[e.g., Hunter and Schmidt, 2004]. Both fixed-effects and random-effects models have been used

in meta-analysis [e.g., Field, 2001; Hedges and Olkin, 1985; Hedges and Vevea, 1998; Hunter

and Schmidt, 2004]. Fixed-effects models assume the true effects are the same and the finding

from each study provides an estimate, ideally unbiased or consistent, of it. Random-effects

models allow the true effects to be different and heterogeneous and can estimate the between-

study variance of the effects. The general consensus is that the random-effects models should

always be used because the fixed-effects models can be viewed as special cases of them [e.g.,

Schmidt et al., 2009; Schmidt and Raju, 2007].

Meta-analysis has been conducted within both the frequentist and Bayesian frameworks al-

though arguably meta-analysis can naturally be viewed as a Bayesian method in general. The

frequentist methods for meta-analysis can be found in many places such as Hedges and Olkin

[1985], Hunter and Schmidt [2004], and Rosenthal [1991]. There are also studies that have dis-

cussed Bayesian meta-analysis [e.g., Brannick, 2001; Carlin, 1992; Morris and Normand, 1992;

Schmidt and Hunter, 1977; Schmidt and Raju, 2007; Smith et al., 1995; Steel and Kammeyer-

Mueller, 2008], which has been considered as having several advantages, such as “full allowance

for all parameter uncertainty in the model, the ability to include other pertinent information that

would otherwise be excluded, and the ability to extend the models to accommodate more com-

plex, but frequently occurring, scenarios” [Sutton and Abrams, 2001, p. 277].
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Traditional meta-analysis, using either the frequentist or Bayesian approach, typically treats

each study of the same quality. Therefore, each study contributes equally to the estimated ef-

fect size after controlling the sample sizes (Ns). This makes sense in the areas such as medical

research where there is relatively less noise in the data and, therefore,N is often everything.

However, in social and behavioral research, not all studies included in a meta-analysis should

make equal contribution to the estimated effect size; treating them equivalently might cause un-

expected consequences in meta-analysis. For example, strategic management scholars may be

interested in the relationships between financial performance and its antecedents, such as human

resource management (HRM) practices [Combs et al., 2006] and human capital [Crook et al.,

2011]. Financial performance can be measured objectively using data from archival data or sub-

jectively using survey data. Although both objective and subjective measures are widely adopted

in the literature, objective information may reflect a firm’s financial status more accurately than

subjective ratings because the latter involves more cognitively demanding assessments and the

informants may not always have the best knowledge of the information. Therefore, those using

objective measures may provide more reliable information of the relationships between financial

performance and other variables than those based on subjective measures. For another example,

due to the difficulty of collecting longitudinal data, longitudinal studies often result in a rela-

tively smaller sample size compared with cross-sectional studies obtaining all information from

a single source. Even though longitudinal designs may help avoid common method problems

and reduce inflation of correlations [Podsakoff et al., 2003], their small sample sizes make them

contribute less to the final result. Instead, the cross-sectional studies with inflated relationships

may easily dominate the overall effect size because of their large sample sizes. As illustrated

in the two examples, treating individual studies equivalently may produce potential misleading

results. Therefore, it is extremely important to understand the effect of each study to the overall

effect size in meta-analysis.

In this paper, we propose to evaluate the contribution of a study through power prior. Es-

pecially, we focus on the meta-analysis of sample correlation although the same method can be
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applied to other effect size measures. In the following, we first demonstrate the use of power

prior through a fixed-effects model and then we extend our method to random-effect models and

meta-regression. Free online software is introduced to carry out the Bayesian meta-analysis dis-

cussed in this study. The use of Bayesian meta-analysis is further demonstrated through a real

meta-analysis example.

2 BAYESIAN META-ANALYSIS THROUGH POWER

PRIOR

The proposed method is derived based on the Fisher z-transformation of correlation. Supposeρ

is the population correlation of two variables that follow a bivariate normal distribution. For a

given sample correlationr from a sample ofn independent subjects, its Fisher z-transformation,

denoted byz, is defined as

z=
1
2

ln
1+ r
1− r

.

z approximately follows a normal distribution with mean

1
2

ln
1+ ρ

1− ρ

and varianceφ = 1
n−3 [Fisher et al., 1921].

Meta-analysis of correlation concerns the analysis of correlation between two variables when

a set of studies regarding the relationship between the two variables are available. Suppose

there arem studies that report the sample correlation between two variables. Each study reports

a sample correlationri with the corresponding sample sizeni . Let zi = 1
2 ln 1+ri

1−ri
denote the

Fisher z-transformation ofri andζi =
1
2 ln 1+ρi

1−ρi
be the Fisher z-transformation of the population

correlation. Then,zi ∼ N(ζi , φi) with φi = (ni − 3)−1.
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2.1 Fixed-effects Models

We first investigate the situation where the population can be considered as homogeneous and,

therefore, a fixed-effects model can be used. In this case, the population correlation is

ζi ≡ ζ =
1
2

ln
1+ ρ

1− ρ

andzi ∼ N(ζ, φi).

The use of Bayesian methods requires the specification of priors [Gelman et al., 2003], which

provides a perfect way to conduct meta-analysis. A prior represents information on the popula-

tion correlation, or its Fisher z-transformation, without any data collection. Although a prior is

required, it may consist of “no” information through certain types of prior such as Jeffreys’ prior

[e.g., Gill, 2002; Jeffreys, 1946]. For the fixed-effects models, we need a prior forζ. Suppose the

prior for ζ follows a normal distributionN(ζ0, ψ0) whereζ0 andψ0 are per-determined values.

For example,ζ could have a prior N(0,1), which means a researcher initially believes the mean

value ofζ is 0, corresponding with a correlation 0, with variance 1. If little to none information is

available, the so-called diffuse prior can be used by specifying a large variance such asψ0 = 108.

After collecting data, in the framework of meta-analysis, with the availability of a study, one

can get a better picture about the population correlation. Bayesian methods provide a way to

update the information on the population correlation through Bayes’ Theorem. Letz1 denote

the new information on the correlation after Fisher z-transformation andz1 ∼ N(ζ, φ1). The

distribution of the population correlationζ by combining the prior and the study is

p(ζ |z1) =
p(ζ)p(z1|ζ)

p(z1)
,

wherep(ζ |z1) is called the posterior ofζ after combining the information inz1. From Appendix

A, we can conclude that the posterior distribution is also a normal distributionN(ζ1, ψ1) where

ζ1 =

1
ψ0
ζ0 +

1
φ1

z1

1
ψ0

+ 1
φ1

(1)

ψ1 =
1

1
ψ0

+ 1
φ1

. (2)
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Therefore, the posterior meanζ1 is the weighted average of prior meanζ0 andz1, where the

weights are the inverse of the variances of prior and data. If the prior is very informative, e.g.,

with a small variance, the prior mean will exert a big effect on the posterior. For an extreme

case, ifψ0 = 0, the posterior mean isζ0, which is also the prior mean. On the other hand, if only

little prior information is available, reflected by a large variance of the prior, the prior mean has

little influence on the posterior. For a special case whereψ0 = +∞, the posterior mean isz1, and

therefore, the posterior is fully determined by data.

The above analysis assumes thatz1 is fully reliable or the researcher wants to utilize full

information fromz1. However, if, for practical reason, the information inz1 is not accurate

enough (e.g., obtained from a flawed research design), it might distort the posterior. In this

situation, a researcher might prefer using only partial information fromz1. Using the power

prior idea developed by Ibrahim and Chen [2000a], we can get the posterior

p(ζ |z1, α1) =
p(ζ)[p(z1|ζ)]α1

p(z1)
, (3)

whereα1 is a power parameter. Note that ifα1 = 0, no information fromz1 is used whereas

whenα1 = 1, full information ofz1 is used. Partial information ofz1 can be utilized by setting

α1 to be a value between 0 and 1. It can be shown (see Appendix B) that the posterior is still a

normal distribution withN(ζ∗1, ψ
∗
1) where

ζ∗1 =

1
ψ0
ζ0 +

α1
φ1

z1

1
ψ0

+ α1
φ1

ψ∗1 =
1

1
ψ0

+ α1
φ1

.

Again the posterior mean is a weighted average of the prior mean andz1. However, note that the

weight is different from the previous situation because it is related to the powerα1. If α1 < 1,

then the weight forz1 is smaller than the one in Equation 1. This means the posterior will rely

more on the prior.

Suppose without data collection, a researcher’s prior information onζ is N(0, 1). One study

in the literature reported a correlation 0.5 with the sample size 28 and, therefore,z1 = 0.549
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with variance 0.04. Table 1 shows the posterior mean and variance forζ with powerα1 ranges

from 0 to 1. Whenα1 = 0, the posterior is the same as the prior. Whenα1 increases from 0.1

to 1, the posterior mean changes towards toz1 because more information fromz1 is included

in the posterior. Furthermore, the posterior variance is also becoming smaller. In summary, the

use of powerα1 influences both the posterior mean and posterior variance and can control the

contribution of data to the posterior.

In meta-analysis, data from multiple studies are available. Bayesian methods provide a nat-

ural way to combine the data together. For example, suppose we have another study with trans-

formed correlationz2 and its varianceφ2 as well as the sample sizen2. Furthermore, the power

α2 is used when combining this study. We have already obtained the posterior ofζ with the first

study in Equation 3. To get the posterior by combiningz2, we can simply view the posterior in

Equation 3 as a new prior. Then, the posterior ofζ with bothz1 andz2 is

p(ζ |z1, z2, α1, α2) =
p(ζ |z1, α1)[p(z2|ζ)]α2

p(z2)
.

From Appendix C, the posterior distribution is a normal distributionN(ζ∗2, ψ
∗
2) where

ζ∗2 =

1
ψ0
ζ0 +

α1
φ1

z1 +
α2
φ2

z2

1
ψ0

+ α1
φ1

+ α2
φ2

ψ∗2 =
1

1
ψ0

+ α1
φ1

+ α2
φ2

.

Clearly, the posterior mean is a weighted average of prior and the two studies. More generally,

if we havem studies withzi , ni , andαi , the posterior distribution ofζ is N(ζ∗m, ψ
∗
m) with

ζ∗m =

1
ψ0
ζ0 +

∑m
i=1

ai
φi

zi

1
ψ0

+
∑m

i=1
ai
φi

ψ∗m =
1

1
ψ0

+
∑m

i=1
ai
φi

.

For illustration, we show the combination of two studies where the first study reported a

correlation 0.5 with the sample size 28 and the second study reported a correlation 0 with the

sample size 103. Therefore,z1 = 0.549 with variance 0.04 andz2 = 0 with variance 0.01. A

diffuse priorN(0,100) is used here so that the effect of prior is minimized. Table 2 presents the
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posterior mean and variance of the population correlation with different combinations of power

for the two studies. First, when no information from the two studies is utilized (α1 = α2 = 0), the

posterior is just the prior. Second, when only the information of Study 1 is fully used (α1 = 1,

α2 = 0), the posterior mean and variance are essentially the same as the Fisher z-transformation

and the variance of Study 1 because of the use of the diffuse prior. Similarly, one can solely use

the information from Study 2 by settingα1 = 0 andα2 = 1. Third, when the information of the

two studies are used fully (α1 = α2 = 1), the posterior mean is about 0.110, the weighted average

of 0.549 and 0 but leaning towards 0 because the second study has a larger sample size and thus

a smaller variance. When settingα1 = α2 = 0.5, the posterior mean is still 0.110 but the variance

is about 0.016, twice of that whenα1 = α2 = 1. This is because only partial information is

used from the two studies. Similar results can be seen from the table when other combination of

power is used. In summary, by controlling the power parameter, one can control the contribution

of each study to meta-analysis.

2.2 Random-effects Models

When the population is not homogeneous, it is not reasonable to assume thatzi has the same

meanζ. Therefore, we discuss the random-effects models in the Bayesian framework. A random-

effects model can be written as a two-level model,





zi = ζi + ei

ζi = ζ + vi

(4)

whereVar(ei) = φi andVar(vi) = τ. The parameterτ represents the between-study variance. In

the model, eachzi has its meanζi and the grand mean ofζi is ζ. Based on Fisher z-transformation,

zi ∼ N(ζi , φi). It is often assumed thatvi has a normal distribution and, therefore,ζi ∼ N(ζ, τ).

For the random-effects model, we have the fixed-effects parameterζ and variance parameterτ.

The parameterτ represents the between-study variability. The parameterζ can be transformed

back to correlation that represents the overall correlation across all studies. In addition, we can
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also estimate the random effectsζi , which can be transformed back to correlations for individual

studies.

As for the fixed-effects models, to estimate model parameters for the random-effects models,

we need to specify priors. In this study, the normal priorN(ζ0, ψ0) is used forζ and the inverse

gamma priorIG(δ0, γ0) is used forτwith ζ0,ψ0, δ0 andγ0 denoting known constants. In practice,

ζ0 = 0,ψ0 = 106, δ0 = 10−3 andγ0 = 10−3 are often used to reduce the influence of priors. With

the priors, the conditional posteriors forζ, τ, andζi can be obtained as in Appendix D. Then, the

following Gibbs sampling procedure can be used to get a Markov chain for each parameter.

Choose a set of initial values forζ andτ, e.g.,ζ(0) = 0 andτ(0) = 1.

Generateζ(1)
i , i = 1, . . . ,m from the normal distribution

N




ζ(0)

τ(0) +
ziαi
φi

1
τ(0) +

αi
φi

,
1

1
τ(0) +

αi
φi



.

Generateτ(1) from the inverse Gamma distribution IG(δ0 + m/2, γ0 + [
∑m

i=1(ζ(1)
i − ζ

(0))2]/2).

Generateζ(1) from the normal distribution

N




∑m
i=1 ζ

(1)
i

τ(1) +
ζ0
ψ0

m
τ(1) +

1
ψ0

,
1

m
τ(1) +

1
ψ0



.

Let ζ(0) = ζ(1) andτ(0) = τ(1) and repeat Steps 2-4 to getζ(2), τ(2) andζ(2)
i , i = 1, . . . ,m. The

above algorithm can be repeated forR times to get a Markov chain forζ, τ, andζi . It can be

shown that the Markov chains converge to their marginal distributions after a certain period and

therefore can be used to infer on the parameters [e.g., Gelman et al., 2003]. The period for the

Markov chains to converge is called the burn-in period. Suppose the burn-in period isk. Then the

rest of the Markov chain from (k+ 1)th iteration to theRth iteration can be used to get the mean

and variance ofζ, τ, andζi . Because a researcher is ultimately interested in the correlations, we

can also get the Markov chains forρ =
exp(2ζ)−1
exp(2ζ)+1 and forρi =

exp(2ζi )−1
exp(2ζi )+1.

To illustrate the influence of power parameters on the random-effects meta-analysis, we con-

sider a simple example with three studies that report correlations 0.5, 0 and -0.5 with sample

sizes 103, 28 and 103. The Fisher z-transformed data and their variances are given in Table 3.
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Table 3 also reports the estimated overall correlationρ and individual correlationρi , i = 1,2, 3.

When the power coefficients are 1 for all three studies, the estimatedρ is approximately 0. Note

that the estimated individual population correlations for the first and third studies are smaller

than the observed ones. This is called “shrinkage” or “multilevel averaging” effect of multilevel

analysis [e.g., Carlin and Louis, 1996; Greenland, 2000; Strenio et al., 1983]. The estimated

random effects are pulled towards the average effect. If, based on expert opinions or other infor-

mation, we suspect the reported negative correlation could be due to the low quality of the study

design, we might assign it a different weight. For example, if we give the third study a power

coefficient 0.1, the estimated overall effect becomes 0.061. Furthermore, if we assign a power

coefficient 0.01, the overall effect becomes 0.215. Therefore, the effect of the observed negative

correlation can be controlled through the chosen power coefficients.

2.3 Meta-regression Models

When a random-effects model is suggested, it often indicates possible between-study hetero-

geneity. Therefore, predictors or covariates can be identified to explain such a heterogeneity.

Suppose a set ofp covariates are available, denoted byx1, x2, . . . , xp. Then, a meta-regression

model can be constructed as below




zi = ζi + ei

ζi = β1 + β2x1i + ∙ ∙ ∙ + βp+1xpi + vi = xiβ + vi

, (5)

whereβ = (β1, β2, . . . , βp+1)′, xi = (1, x1i , x2i , . . . , xpi), andvi ∼ N(0, τ). If a coefficient βi is

significant,xp is a significant predictor that might be related to the between-study heterogeneity.

To estimateβ andφ, we specify the multivariate normal prior forβ asN(ζ0,Ψ0) and the

inverse Gamma priorIG(δ0, γ0) for τ. Typically, we use the following hyper-parameters for

the priors:ζ0 = 0(p+1)×1, Ψ0 = 106I with I denoting a (p + 1) × (p + 1) identity matrix, and

δ0 = γ0 = 10−3.

With the prior, the conditional posteriors forβ, τ, andζi can be obtained as shown in Ap-

pendix E. The conditional posterior distribution ofτ is an inverse Gamma distributionτ|β, ζi ∼
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IG(δ0 + m/2, γ0 +
∑m

i=1(ζi − xiβ)2/2). The conditional posterior distribution forβ is still a mul-

tivariate normal distribution

N

((
Ψ−1

0 +
X′X
τ

)−1(
Ψ−1

0 ζ0 +
X′X
τ

β̂
)
, (Ψ−1

0 +
X′X
τ

)−1
)

whereβ̂ is the least square estimate ofβ such thatβ̂ = (X′X)−1X′ζ with X = (x1, . . . , xm)′ as

the design matrix andζ = (ζ1, ζ2, . . . , ζm)′. The conditional posterior forζi is

N




αi zi
φi

+
Xi β
τ

αi
φi
+ 1

τ

,
1

αi
φi
+ 1

τ


 .

With the set of conditional posteriors, the Gibbs sampling algorithm can be used to generate

Markov chain for each unknown parameter as for the random-effects meta-analysis.

3 SOFTWARE

To facilitate the use of Bayesian meta-analysis method through power prior, we developed a

free online program that can be accessed with the URLhttp://webbugs.psychstat.org/

modules/metacorr/. The online program can be used within a typical Web browser. It has an

interface shown in Figure 1. To use the program, one needs either to upload a new data file or

select an existing file. Note names of the existing files are shown in the drop down menu. The

existing file has to be a text file in which the data values are separated by one or more white

spaces. The first line of the data file should be the variable names, which will be used in the

model.

Next, a user chooses a model to use. For example, the user can choose to use either the

random-effects model (default option) or the fixed-effects model. Then, information on the

model can be provided. Both theCorrelation and Sample sizeare required for all analysis,

which can be specified using the variable names in the data set. For example, if we use “fi”

to represent the correlation between financial performance and another variable in the data set,

then “fi” should be input in the field ofCorrelation in the interface. Similarly, “n” is used in the

Sample size field because in the data set, “n” is the variable name for sample size. In addition, a
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user can also specify the variables for power coefficients used in the power prior and covariates

used in the model.

Finally, one can choose to control the Markov chain Monte Carlo (MCMC) method and

output of the meta-analysis. For example, the total number of Monte Carlo iteration and the

burn-in period can be specified. In the output, one can require the output of the estimates for

random effectsζi , DIC, and diagnostic plots for all model parameters including the random

effects. If one checks the optionEmail notification, an email will be sent to the user once the

analysis is completed.

4 AN EXAMPLE

We use the relationship between high-performance work systems (HPWS) and financial perfor-

mance as an example to illustrate the use of Bayesian meta-analysis with power prior. HPWS

refers to a bundle of human resource management (HRM) practices that are intended to enhance

employees’ abilities, motivation, and opportunity to make contribution to organizational effec-

tiveness, including practices such as selective hiring, extensive training, internal promotion, de-

velopmental performance appraisal, performance-based compensation, flexible job design, and

participation in decision making [Lepak et al., 2006]. Strategic HRM scholars have devoted

considerable effort to studying the influence of HPWS on firm performance in the past three

decades and consistently found that the use of HPWS is positively related to employee and firm

performance [Paauwe et al., 2013]. Indeed, recent meta-analyses have demonstrated the positive

relationships between HPWS and a variety of performance outcomes [Combs et al., 2006; Jiang

et al., 2012; Subramony, 2009], including employee outcomes (e.g., human capital, employee

motivation), operational outcomes (e.g., productivity, service quality, and innovation), and fi-

nancial outcomes (e.g., profit, return on assets, and sales growth). The purpose of this study is

not to compare the results obtained from Bayesian meta-analysis to those of previous research.

Instead, we use the research on HPWS as an example and focus on the relationship between
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HPWS and financial performance, which is one of the most important considerations of strategic

HRM research. Following the standard meta-analysis procedure, we identified 56 independent

studies with the correlation data on HPWS and financial performance that were entered in the

following analysis.

Before conducting Bayesian meta-analysis, we first corrected the observed correlation from

each sample for unreliability by following the procedure outlined by Hunter and Schmidt (2004).

Because HPWS has been considered as a formative construct (Delery, 1998) for which a high

internal reliability (e.g., Cronbach’s alpha) is not required, we used a reliability of 1 for the

measure of HPWS. Similarly, we used a reliability of 1 for the objective measures of financial

performance and used Cronbach’s alpha as the reliability of the subjective measures of financial

performance.

In addition, we consider firm size as a potential moderator of the relationship between HPWS

and financial performance in order to test the meta-regression model of this study. Firm size is

commonly included as a control variable in strategic HRM research, but its moderating effect has

rarely been explored in either primary studies or a meta-analysis. Two competing hypotheses can

be proposed in terms of its moderating role. On the one hand, some researchers have suggested

that large organizations are likely to use more sophisticated HRM practices (e.g., HPWS) com-

pared with small and medium enterprises [e.g., Guthrie, 2001; Jackson and Schuler, 1995]. As

firm size increases, firms may also have more advantages such as economy of scale [e.g., Pfef-

fer and Salancik, 2003] and thus be more likely to gain benefit from their investment in HRM

practices. On the other hand, large firms’ financial performance may be more affected by other

factors beyond human resources [Capon et al., 1990]. In this case, the role of HPWS in enhanc-

ing financial performance may be limited in large firms than in small and medium firms. Taking

these considerations together, we expect that firm size may moderate the relationship between

HPWS and financial performance but make no directional prediction of this effect. Firm size

is usually indicated by the number of employees. Studies with average number of employees

greater than 250 were coded as 1 (i.e., large firms) and the others were coded as 0 (i.e., small and

13
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

medium firms).

Table 4 shows the summary statistics of the data used in this example. Among the total of 56

studies, 46 measured financial performance using the archival data (i.e., objective performance)

and 10 used subjective measures of financial performance (i.e., subjective performance). In

addition, 37 studies were coded as large firms and 19 were coded as small and medium firms.

The observed correlations ranged from 0.01 to 0.52 with the sample sizes ranging from 50 to

2136.

Four power schemes are considered in the meta-analysis. First, every study is given the

power coefficient of 1. In this case, every study contributes to the meta-analysis result fully and

equally. This is equivalent to conduct traditional meta-analysis using Bayesian methods. Second,

the reliability of financial performance of each study is used as power coefficients. The reason

for this choice is that, if a measure is not reliable, only partial information will be used in meta-

analysis. Third, two studies have sample sizes larger than 1000 (1212 and 2136, respectively).

In order to avoid the dominant influence of the two studies on the final result, we assign them a

power coefficient of 0.1 and the rest of studies a power coefficient of 1 in meta-analysis. Fourth,

arguably a study with a large effect size is more likely to be published, which might cause

publication bias. Therefore, reducing the influence of the studies with larger effect sizes might

be helpful in reducing publication bias. In this power scheme, we set the power coefficient at 0.5

for studies with correlations larger than 0.2. For the power schemes 3 and 4, the choice of power

coefficients is rather liberal. A more serious analysis might consider different levels of power

coefficients.

4.1 Results of Fixed-effects Meta-analysis

We first apply the fixed-effects meta-analysis model to the example data. Table 5 shows the

results using the four different power schemes. When every study is assigned the equal power

coefficient of 1 (Power scheme 1), the estimated overall correlationρ is 0.263 (ζ is the Fisher

z-transformed estimate). If the reliability of financial performance is used as power coefficients
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(Power scheme 2), the estimated correlation is about 0.264. However, when the two studies with

the largest sample size are assigned a power coefficient of 0.5 (Power scheme 3), the estimated

correlation becomes 0.226. Note the estimated correlation in this condition is significantly dif-

ferent from the other two correlation estimates based on the credible interval estimates. The

correlations for the two studies are 0.34 and 0.45, respectively, both of which are larger than the

estimated fixed-effect correlation. When no power prior is used, the two studies pull the esti-

mates close to their correlation estimates because their larger sample sizes lead to larger weights

in the estimating the overall correlation. Under the situation where the studies with larger corre-

lations are assigned a weight 0.5 (Power scheme 4), the estimated correlation is 0.22, which is

even smaller than that from Power scheme 3. This is because the larger correlations are down-

weighted.

4.2 Results of Random-effects Meta-analysis

Table 6 shows the results from the random-effects meta-analysis. First, the estimated correlations

from the random-effects and fixed-effects methods are different (0.23 vs. 0.27) when the power

priors are not used. This is because for the random-effects method, the between-study variabil-

ity is considered. Therefore, extreme studies (e.g., those with unusual large sample sizes) are

shrunk towards the average. Furthermore, within the random-effects method, differences in the

estimated correlations are smaller. Second, only for power scheme 4, the estimated correlation

shows a notable difference from the rest of the power schemes. The reason is because studies

with larger correlations are downweighted. Third, in all situations, the variance estimate ofτ is

significant. This indicates there is sufficient variability in the studies to consider a random-effects

meta-analysis to model the heterogeneity.

4.3 Results of Meta-regression

From the random-effects meta-analysis, we concluded that the population should be considered

as heterogeneous.Through meta-regression analysis, we investigate whether the heterogeneity
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is related to firm size of different studies. Based on the results in Table 7, firm size is not

significantly related to the between-study heterogeneity in the population correlations because

the slope parameterβ2 is not significant regardless of the choice of power schemes. Furthermore,

the results from the first three power schemes are very close. Comparing all four power schemes,

power scheme 4 has a smaller intercept but a larger absolute slope. Altogether, the results do not

suggest the moderating effect of the firm size on the relationship between HPWS and financial

performance. It implies that HPWS used in both large firms and small and medium firms are

salutary for enhancing financial performance.

5 DISCUSSION

The current study presents a Bayesian method for meta-analysis. A unique feature of our method

is to enable researchers to evaluate the contribution of individual studies included in a meta-

analysis through power prior. The motivation of this approach comes from the notion that not all

studies should be treated equivalently when estimating the overall effect size in a meta-analysis.

By developing an online program and using the example of the relationship between HPWS and

financial performance, we have shown how to apply this method in practice. In the rest of this

article, we briefly summarize the example results derived from the method we proposed.

In the example study, we use four power schemes to assign power coefficients to individual

studies included in the meta-analysis. As shown in fixed-effects, random-effects, and meta-

regression models, using the reliability of financial performance as power does not dramatically

change the results obtained from regular meta-analysis that uses full information provided by

each study. This is because that only ten studies used subjective measures of financial perfor-

mance and the use of reliability as power would only influence how the ten out of 56 studies

contribute to the final results. Moreover, the reliability for the subjective measures is typically

high, so the vast majority of the information they provide still contributes to the overall effect

size. If one uses another example with more subjective measures, the difference in effect size
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estimates between regular meta-analysis and meta-analysis using reliability as power may be

more obvious. Either way, our method provides a way to evaluate whether reliability influences

meta-analysis results.

When power prior is used to reduce the influence of two studies with large sample sizes,

the overall effect size estimate in fixed-effects model becomes significantly different from what

is obtained in the regular model, and the change is less obvious in random-effects and meta-

regression models. This is because between-study variability is taken into account in random-

effects models, which can shrink extreme effect sizes towards the average. However, this does

not mean that using power prior to modify the impact of extremely large samples always has a

larger impact on fixed-effects model than on random-effects model. It may also depend on the

observed correlations of studies with large sample sizes. For example, if the correlation of a large

sample is similar to the weighted average of the rest of the studies, assigning a small power to

the large sample may not significantly change the overall effect size in either fixed-effects model

or random-effects model.

The influence of power prior becomes more salient under power scheme 4 where studies with

correlations larger than 0.2 are assigned a power coefficient of 0.5. We argue that this setting can

potentially be used to deal with publication bias. For example, if we believe the studies with

larger effect sizes are over-sampled, we can assign them power smaller than 1. On the other

hand, if one believes the studies with smaller effect sizes are under-sampled, power coefficients

larger than 1 can also be used. Certainly the choice of power prior needs careful consideration.

Bayesian meta-analysis with power prior can also be used to deal with outliers, including

outliers of observed correlations and outliers of sample sizes. Traditionally, researchers often

eliminate the most extreme data points to attenuate the influence of outliers on overall effect size

estimation [e.g., Hedges, 1992; Huber, 1981; Tukey, 1960]. This is similar to assigning a power

coefficient of 0 to studies considered as outliers and using no information of the eliminated

studies in analysis. However, rather than deleting the data points completely, researchers can

also choose to use only a small part of their information by assigning a small non-zero power
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coefficient to those studies.

One important issue that is out of the discussion of this article is what power coefficient

should be assigned to each study in meta-analysis with power prior. The method proposed in this

study cannot determine whether a power prior scheme is realistic or not to reflect the contribution

of each study to the final results. It is more reasonable for researchers who are familiar with

the nature of the included studies to make the decisions. The general guideline is to identify

the criteria that can indicate the credibility of research findings and use it to guide power prior

decision in meta-analysis. One attempt of this study is to use reliability as power coefficients for

studies relying on subjective measures, which may reduce the over-correction for unreliability

due to extremely low reliability. In addition, we recommend that one should always compare

the results from the analysis with and without power priors to inform the influence of the use of

power priors. We encourage more efforts to further explore this issue in the future.

This study can be improved and extended in many ways. First, in both random-effects meta-

analysis and meta-regression, we assume that the random effects follow a normal distribution.

This assumption might not be valid when there are extreme values. Further study can incorporate

robust Bayesian analysis to deal with the problem [e.g., Zhang et al., 2013]. Second, the current

study has focused on the development of the method for correlation. However, the method can

be applied to other effect sizes such as mean differences and odds ratios. Third, Ibrahim and

Chen [2000b] has suggested that the power coefficients in the power prior can be estimated by

specifying a distribution for the power coefficient. In the literature, a beta distribution has been

used. A future study can investigate this in meta-analysis.
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6 APPENDIX A

With the prior and the information from the first study, the posterior, based on Bayes’ Theorem,

is

p(ζ |z1) =
p(ζ)p(z1|ζ)

p(z1)

=

1√
2πψ0

exp
[
− (ζ−ζ0)2

2ψ0

]
1√
2πφ1

exp
[
− (z1−ζ)2

2φ1

]

p(z1)

=

1√
2πψ0

1√
2πφ1

exp
[
−( 1

2ψ0
+ 1

2φ1
)ζ2 + 2( 1

2ψ0
ζ0 +

1
2φ1

z1)ζ − (
ζ2

0
2ψ0

+
z2
1

2φ1
)
]

p(z1)
,

=
D exp

[
−1

2(Aζ2 + 2Bζ + C)
]

p(z1)

=

D exp
[
−

(ζ− B
A )2

2 1
A
− 1

2(C − B2

A )
]

p(z1)

where

A =
1
ψ0

+
1
φ1

B =
1
ψ0
ζ0 +

1
φ1

z1.

C =
ζ2

0

ψ0
+

z2
1

φ1

The denominator is

p(z1) =

∫ +∞

−∞
(D exp


−

(ζ − B
A)2

21
A

−
1
2

(C −
B2

A
)


)dζ

= D exp

[

−
1
2

(C −
B2

A
)

]

×

√

2π
1
A

Therefore, the posterior is

p(ζ |z1) =
1

√
2π 1

A

exp


−

(ζ − B
A)2

21
A


 ,

a normal distribution with mean

B/A =

1
ψ0
ζ0 +

1
φ1

z1

1
ψ0

+ 1
φ1

=
φ1ζ0 + ψ0z1

φ1 + ψ0
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and variance

1/A =
1

1
ψ0

+ 1
φ1

.

7 APPENDIX B

With the power parameterα1, the posterior

p(ζ |z1) =
p(ζ)[p(z1|ζ)]α1

p(z1)

=

1√
2πψ0

exp
[
− (ζ−ζ0)2

2ψ0

] {
1√
2πφ1

exp
[
− (z1−ζ)2

2φ1

]}α1

p(z1)

=

1√
2πψ0

(
1√
2πφ1

)α1

exp
[
− (ζ−ζ0)2

2ψ0
− exp

[
− (z1−ζ)2

2φ1/α1

]]

=

D exp
[
−( 1

2ψ0
+ 1

2φ∗1
)ζ2 + 2( 1

2ψ0
ζ0 +

1
2φ∗1

z1)ζ − (
ζ2

0
2ψ0

+
z2
1

2φ∗1
)
]

p(z1)
,

=
D exp

[
−1

2(Aζ2 + 2Bζ −C)
]

p(z1)

=

D exp
[
−

(ζ− B
A )2

2 1
A
− 1

2(C − B2

A )
]

p(z1)

where

A =
1
ψ0

+
1
φ∗1

B =
1
ψ0
ζ0 +

1
φ∗1

z1,

C =
ζ2

0

ψ0
+

z2
1

φ∗1

andφ∗1 = φ1/α1. From Appendix A, the posterior isN(B/A,1/A) where

B/A =

1
ψ0
ζ0 +

1
φ∗1

z1

1
ψ0

+ 1
φ∗1

=
φ∗1ζ0 + ψ0z1

φ∗1 + ψ0
=

φ1
α1
φ1 + ψ0z1

φ1
α1

+ ψ0

1/A =
1

1
ψ0

+ 1
φ∗1

=
1

1
ψ0

+ α1
φ1

.
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8 APPENDIX C

Show the posterior

p(ζ |z1, z2, α1, α2) =
p(ζ |z1, α1)[p(z2|ζ)]α2

p(z2)

=

1√
2πψ∗1

exp
[
−

(ζ−ζ∗1)2

2ψ∗1

] {
1√
2πφ2

exp
[
− (z2−ζ)2

2φ2

]}α2

p(z2)

=
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2πφ2

)α2

exp
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−
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]]

p(z2)

=
D exp
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−1

2(Aζ2 + 2Bζ −C)
]

p(z1)

=

D exp
[
−

(ζ− B
A )2

2 1
A
− 1

2(C − B2

A )
]

p(z1)

The denominator is

p(z1) =

∫ +∞

−∞
(D exp


−

(ζ − B
A)2

21
A

−
1
2

(C −
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A
)


)dζ

= D exp

[

−
1
2

(C −
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A
)

]

×

√

2π
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A

The posterior isN(B/A, 1/A) where

B/A =

1
ψ∗1
ζ∗1 +

1
φ∗2

z2

1
ψ∗1

+ 1
φ∗2

=

1
ψ0
ζ0 +

α1
φ1

z1 +
α2
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+ α2
φ2

9 APPENDIX D

The joint posterior distribution is

p(ζ, τ, ζi |zi , φi , αi) ∝ p(ζ)p(τ)
m∏

i=1

pαi (zi , ζi |ζ, τ)

= p(ζ)p(τ)
m∏

i=1

[
pαi (zi |ζi , φi)p(ζi |ζ, τ)

]
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∝
1

√
2πψ0

exp

[

−
(ζ − ζ0)2

2ψ0

]

τ−δ0−1 exp
[
−
γ0

τ

]

×




m∏
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(2πφi)
−αi/2


 exp


−

m∑

i=1

(zi − ζi)2

2φi/αi


 (2πτ)−m/2 exp


−

∑m
i=1(ζi − ζ)2

2τ


 .

Now we obtain the conditional posterior distributions.

First, we get the conditional posterior distribution ofτ, which is

p(τ|ζi , ζ, αi) ∝ τ
−δ0−1−m/2 exp

[

−
2γ0 +

∑
(ζi − ζ)2

2τ

]

.

Therefore, the posterior is inverse Gamma distribution IG(δ0 + m/2, γ0 + [
∑

(ζi − ζ)2]/2).

Second, the conditional posterior distribution ofζ is

p(ζ |ζi , τ) ∝ exp

[

−
(ζ − ζ0)2

2ψ0
−

∑
(ζi − ζ)2

2τ

]

.

Therefore, the conditional posterior is a normal distribution

N




∑m
i=1 ζi

τ +
ζ0
ψ0

m
τ + 1

ψ0

,
1

m
τ + 1

ψ0



.

Third, the conditional posterior distribution ofζi is

p(ζi |ζ, zi , τ, αi) ∝ exp

[

−
(zi − ζi)2

2φi/αi
−

(ζi − ζ)2

2τ

]

,

which is a normal distribution

N




ζ
τ +

ziαi
φi

1
τ +

αi
φi

,
1

1
τ +

αi
φi


 .

10 APPENDIX E

The joint posterior distribution for the meta-regression model is

p(β, τ|zi , ζi , αi) ∝ p(β)p(τ)
∏

pαi (zi , ζi |β, τ)

= p(β)p(τ)
∏

pαi (zi |ζi , φi)p(ζi |β, τ)

∝ |Ψ0|
−1/2 exp

[

−
1
2

(β − ζ0)′Ψ0
−1(β − ζ0)

]

τ−δ0−1 exp
[
−
γ0

τ

]

×
∏{

(2πφi)
−αi/2 exp

[

−
∑ (zi − ζi)2

2φi/αi

]

(2πτ)−m/2 exp

[

−
∑

(ζi − xiβ)2

2τ

]}

.
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The conditional posterior distribution ofτ is

p(τ|β, ζi) ∝ τ
−(δ0+m/2)−1 exp

[

−
γ0 +

∑
(ζi − xiβ)2/2
τ

]

(6)

Therefore,τ|β, ζi ∼ IG(δ0+m/2, γ0+
∑

(ζi −xiβ)2/2). The conditional posterior distribution for

β is

p(β|τ, ζi) ∝ exp

[

−
1
2

(β − ζ0)′Ψ−1
0 (β − ζ0)

]

exp

[∑
(ζi − xiβ)2

2τ

]

. (7)

Let ζ = (ζ1, ζ2, ∙ ∙ ∙ , ζm)′ be the vector ofζ′i s, and β̂ be the least square estimate such that

β̂ = (X′X)−1X′ζ with X = (x1, . . . , xm)′ as the design matrix. Then the conditional posterior

distribution ofβ is a multivariate normal distribution

N

((
Ψ−1

0 +
X′X
τ

)−1(
Ψ−1

0 ζ0 +
X′X
τ

β̂
)
, (Ψ−1

0 +
X′X
τ

)−1
)

For ζi , its conditional distribution is

p(ζi |β, τ) ∝ exp

[

−
(zi − ζi)2

2φi/αi

]

exp

[

−
(ζi − Xiβ)2

2τ

]

,

a normal distribution

N(

αi zi
φi

+
Xi β
τ

αi
φi
+ 1

τ

,
1

αi
φi
+ 1

τ

).
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Table 1: The influence of the selection of power parameters for a single study

Data z-transformation Varianceestimate
r1 = 0.5 0.549 0.04

Prior 0 1
Power schemes Posterior

α1 Mean Variance
0 0 1

0.1 0.392 0.286
0.2 0.458 0.167
0.3 0.485 0.118
0.4 0.499 0.091
0.5 0.509 0.074
0.6 0.515 0.063
0.7 0.520 0.054
0.8 0.523 0.048
0.9 0.526 0.043
1 0.528 0.038
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Table 2: The influence of the selection of power parameters for combining two studies

Data z-transformation Variance estimate
r1 = 0.5 0.549 0.04
r2 = 0 0 .01
Prior 0 100

Power schemes Posterior
α1 α2 Mean Variance
0 0 0 100
1 0 0.549 0.040
0 1 0.000 0.010

0.1 1 0.013 0.010
1 0.1 0.392 0.029

0.5 0.5 0.110 0.016
0.2 1 0.026 0.010
1 0.2 0.305 0.022

0.2 0.8 0.032 0.012
0.8 0.2 0.275 0.025
1 1 0.110 0.008
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Table 3: The influence of the use of power parameters on random-effects meta-analysis

Data z-transformation Variance estimate
r1 = 0.5 0.549 0.01
r2 = 0 0 0.04

r3 = −0.5 -0.549 0.01
Prior 0 100

Power scheme Posteriormean
α1 α2 α3 ρ ρ1 ρ2 ρ3

1 1 1 -0.002 0.482 -0.001 -0.482
1 1 0.1 0.061 0.476 0.022 -0.305
1 1 0.01 0.215 0.469 0.099 0.099
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Table 4: Summary statistics

Minimum Mean Median Maximum Standard deviation
Correlation 0.01 0.22 0.200 0.52 0.13
Sample size 50 281 191 2136 325
Reliability 0.74 0.97 1 1 0.07

Small & Medium: 19 Large: 37
Objective studies: 46 Subjective studies:10
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Table 5: Results from fixed-effects meta-analysis

Power Scheme Estimate sd CI DIC

1
ζ 0.27* 0.008 0.254 0.285

184
ρ 0.26* 0.007 0.249 0.278

2
ζ 0.27* 0.008 0.255 0.286

175.9
ρ 0.26* 0.008 0.249 0.279

3
ζ 0.23* 0.009 0.212 0.247

72.11
ρ 0.23* 0.008 0.209 0.242

4
ζ 0.22* 0.009 0.205 0.242

77.44
ρ 0.22* 0.009 0.202 0.237

Note. * p < 0.05. Power scheme 1: each study is given a power coefficient of 1. Power scheme
2: the reliability of financial performance is used as power coefficients. Power scheme 3: the two
studies with the largest sample sizes are given a power coefficients of 0.1. Power scheme 4: studies
with correlations larger than 0.2 are given a power coefficient of 0.5, otherwise, 1.
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Table 6: Results from random-effects meta-analysis

Power Scheme Estimate sd CI DIC

1
ζ 0.23* 0.02 0.191 0.269

-98.45τ 0.016* 0.004 0.01 0.026
ρ 0.226* 0.019 0.189 0.263

2
ζ 0.23* 0.02 0.191 0.27

-97.18τ 0.016* 0.004 0.01 0.026
ρ 0.226* 0.019 0.189 0.263

3
ζ 0.228* 0.02 0.19 0.267

-93.99τ 0.016* 0.004 0.009 0.025
ρ 0.224* 0.019 0.187 0.261

4
ζ 0.218* 0.02 0.178 0.259

-85.4τ 0.015* 0.004 0.008 0.024
ρ 0.214* 0.019 0.177 0.253

Note. * p < 0.05. Power scheme 1: each study is given a power coefficient of 1. Power scheme
2: the reliability of financial performance is used as power coefficients. Power scheme 3: the two
studies with the largest sample sizes are given a power coefficients of 0.1. Power scheme 4: studies
with correlations larger than 0.2 are given a power coefficient of 0.5, otherwise, 1.
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Table 7: Results from meta-regression2,3

Power Scheme Estimate sd CI DIC

1
β1(intercept) 0.248* 0.034 0.181 0.316

-97.9β2(size) -0.028 0.042 -0.113 0.053
τ 0.017* 0.004 0.01 0.026

2
β1(intercept) 0.249* 0.034 0.181 0.317

-96.63β2(size) -0.029 0.042 -0.113 0.053
τ 0.016* 0.004 0.01 0.026

3
β1(intercept) 0.245* 0.034 0.179 0.312

-93.5β2(size) -0.027 0.042 -0.111 0.054
τ 0.016* 0.004 0.009 0.025

β1(intercept) 0.24* 0.035 0.172 0.31
-84.794 β2(size) -0.034 0.043 -0.121 0.048

τ 0.015* 0.004 0.008 0.025

Note. * p < 0.05. Power scheme 1: each study is given a power coefficient of 1. Power scheme
2: the reliability of financial performance is used as power coefficients. Power scheme 3: the two
studies with the largest sample sizes are given a power coefficients of 0.1. Power scheme 4: studies
with correlations larger than 0.2 are given a power coefficient of 0.5, otherwise, 1.
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Figure 1: The interface of the online software metacorr
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