User Tools

Site Tools


effectsize:cohen_s_d

Cohen's d for independent two-sample design

Calculator

Group 1 (Treatment)
Sample size
Sample mean
Sample variance
Group 2 (Control)
Sample size
Sample mean
Sample variance
Upload data
Select your file
Data information
Options
Confidence level
Number of bootstraps
Type of CI



For studying the standardized group mean difference in an independent two-sample design, the most popular effect size measure is defined as

$$ \delta = \frac{\mu_1 - \mu_2}{\sigma} $$

where $\mu_1$ and $\mu_2$ are the population means of the two groups and $\sigma$ is the common standard deviation for the two populations.

Cohen's d

One estimator of the population effect size is Cohen's d. It is calculated as

$$ d = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}}} $$

where $n_1$ and $n_2$ are sample sizes, $\bar{y}_1$ and $\bar{y}_1$ are sample means, and $s_1^2$ and $s_2^2$ are sample variances under the two different conditions, respectively.

Confidence Intervals

Algina and Keselman (2003) constructed a confidence interval for the population effect size based on a non-central t-distribution. In the method, one first gets the lower and upper bounds of the non-centrality parameter as $\lambda_L$ and $\lambda_U$ by solving

$$2[1-pt(d/\sqrt{1/n_{1}+1/n_{2}},n_{1}+n_{2}-2,\lambda_{L})]=1-\alpha$$

and

$$2[1-pt(d/\sqrt{1/n_{1}+1/n_{2}},n_{1}+n_{2}-2,\lambda_{U})]=\alpha$$

where $pt$ is the cdf of the t-distribution.

Now the confidence interval is given by

$$ \left[\lambda_L \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}, \lambda_U \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right] $$

Assumptions

  • Normally distributed data
  • Equal group variances

Issues

Cohen's d is a biased estimator of the population effect size for standardized group mean difference. An alternative measure is Hedges' g.

Testing data

References

Algina, J., & Keselman, H. J. (2003). Approximate confidence intervals for effect sizes. Educational and Psychological Measurement, 63, 537-553.

effectsize/cohen_s_d.txt · Last modified: 2025/04/27 14:02 by johnny zhang